
Soft Comput
DOI 10.1007/s00500-016-2060-y

METHODOLOGIES AND APPLICATION

Multilevel framework for large-scale global optimization

Sedigheh Mahdavi2 · Shahryar Rahnamayan2 · Mohammad Ebrahim Shiri1

© Springer-Verlag Berlin Heidelberg 2016

Abstract Large-scale global optimization (LSGO) algo-
rithms are crucially important to handle real-world prob-
lems. Recently, cooperative co-evolution (CC) algorithms
have successfully been applied for solving many large-scale
practical problems. Many applications have imbalanced sub-
components where the size of subcomponents and their
contribution to the objective function value are different.
CC algorithms often lose their efficiency on LSGO prob-
lems with the imbalanced subcomponents; since they do not
consider the imbalance aspect of variables. In this paper,
we propose a multilevel optimization framework based on
variables effect (called MOFBVE) which optimizes several
subcomponents of the most important variables at earlier
stages of optimization procedure before optimizing the prob-
lemwith the original search space at its last stage. Sensitivity
analysis (SA) method determines how the variation in the
outputs of the model can be influenced by the variation of
its input parameters. MOFBVE computes the main effect of
variables using an SA method, Morris screening, and then it
employs the k-means clustering method to construct groups
including variables with the similar effects on the fitness
value. The constructed groups are sorted in the descending
order based on their contribution on the fitness value and

Communicated by V. Loia.

B Shahryar Rahnamayan
Shahryar.Rahnamayan@uoit.ca

Sedigheh Mahdavi
sedigheh.mahdavi@uoit.ca

1 Department of Mathematics and Computer Science,
Amirkabir University of Technology, Tehran, Iran

2 Department of Electrical, Computer, and Software
Engineering, University of Ontario Institute of Technology
(UOIT), 2000 Simcoe Street North, Oshawa, ON L1H 7K4,
Canada

the top groups are selected as the levels of the important
variables. MOFBVE can reduce the complexity of search
space to work with a simplified model to achieve an efficient
exploration. The performance of MOFBVE is benchmarked
on the imbalanced LSGO problems, i.e., two individually
modified CEC-2010 and the CEC-2013 LSGO benchmark
functions. The simulated experiments confirmed that MOF-
BVE obtains a promising performance on the majority of the
imbalanced LSGO test functions. Also, MOFBVE is com-
pared with state-of-the-art CC algorithms; and the results
show that it is better than or at least comparable to CC algo-
rithms.

Keywords Large-scale global optimization (LSGO) ·
Cooperative co-evolution (CC) · Sensitivity analysis (SA) ·
Multilevel · Variable effect

1 Introduction

Large-scale global optimization (LSGO) is a demanding
research direction because themajority of scientific and engi-
neering problems with a large number of decision variables
(such as designing large-scale electronic systems, schedul-
ing problems with the large number of resources and service
providers, vehicle routing in the large-scale traffic networks,
gene recognition in the bioinformatics, inverse problem
chemical kinetics, etc.) are formulated as LSGO problems.
Recently, several metaheuristic algorithms have been applied
to solve LSGO problems, but their performance deteriorates
rapidly as the dimensionof problems increases (Li et al. 2013;
Tang et al. 2010; Tenne and Goh 2010). Recently, a large
number of enhanced metaheuristic algorithms have been
proposed to solve LSGO problems efficiently. In general,
for tackling LSGO problems, there are two main branches

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-016-2060-y&domain=pdf

S. Mahdavi et al.

of metaheuristic algorithms: cooperative co-evolution (CC)
algorithms (Potter and De Jong 1994; Potter 1997), and non-
decomposition-based methods. CC algorithms decompose
LSGO problems into several low-dimensional subcompo-
nents in order to solve them using divide-and-conquer
approach. Due to interactions among variables in the nonsep-
arable problems, the majority of the decomposition methods
attempts to recognize interacting variables and assign them
to the same subcomponent since it has a significant impact
on the efficiency of the optimization processes. The non-
decomposition-based methods enhanced the performance of
standard metaheuristic algorithms to tackle LSGO prob-
lems by focusing on especial alterations such as defining
new mutation, selection, and crossover operators, designing
and using local search, opposition-based learning, sampling
operator, hybridization, or variable population size methods
(Mahdavi et al. 2015). For more information on LSGO algo-
rithms, the reader is referred to Mahdavi et al. (2015); a
survey paper which has been published recently, covering the
CC and non-decomposition-based methods to solve LSGO
problems.

In the majority of real-world problems, their subcompo-
nents are imbalanced, i.e., the size of subcomponents and
their contribution to the objective function value are differ-
ent (Li et al. 2013;Omidvar et al. 2015).Whilemany research
works have been conducted to tackle LSGO problems, only
a few works have been reported to solve imbalanced LSGO
problems. In Omidvar et al. (2011), the modified CC algo-
rithms were proposed which assign more computational
budget to the subcomponent with the maximum effect on
the objective function. Many existing LSGO algorithms do
not pay enough attention to the imbalance aspect of variables
and thus lose their efficiency on imbalancedLSGOproblems.
Therefore, studying and considering the different effects of
all variables in the imbalanced LSGO problems would be
beneficial to propose efficient LSGO algorithms. Our study
is motivated by two fundamental questions: (1) how can we
identify the effect of variables in a black-box function (i.e.,
no a priori knowledge about the problem is given)? (2) How
LSGO algorithms can use the information about variables’
effect to improve their performance? This paper attempts to
address these questions.

Sensitivity analysis methods allow to understand the rela-
tionships and impacts of input parameters on the output of a
model (Saltelli et al. 2000, 2008; Rabitz and Aliş 1999). We
used the sensitivity analysis methods to rank the importance
of the variables in terms of their influence on the objective
function value. In this paper, we propose a multilevel opti-
mization frameworkbasedonvariables effect (MOFBVE). In
MOFBVE, the levels of significant variables are constructed
to obtain a simplifiedmodel of LSGO problem in which vari-
ables with the most influence on the objective function are
optimized and the values of unimportant variables, i.e., vari-

ables with less effect are fixed. By constructing the smaller
levels of the search space, the proposed method reduces the
complexity of the search space in LSGO problems at first
stages to obtain suitable candidate solutions as initial solu-
tions at next stages. The performance of MOFBVE is evalu-
ated on the set of benchmark functionswhich are themodified
version of CEC-2010 benchmark problems with the imbal-
anced subcomponents and the CEC-2013 LSGO benchmark
functions. Compared to other CC algorithms, the simulated
experiments demonstrate that MOFBVE is a highly compet-
itive optimization algorithm for solving LSGO problems.

The organization of the rest of this paper is as follows.
Section 2 gives a background review of CC algorithms and
Morris screening method. Section 3 describes the proposed
CC framework in detail. Section 4 presents the experimen-
tal results and discussion. Finally, the paper is concluded in
Sect. 5.

2 Background review

2.1 Cooperative co-evolution

In 1994, the CC algorithms were proposed by Potter and
De Jong (1994); Potter (1997). The classical steps of CC
algorithms can be summarized as follows:

– Decompose a high-dimensional objective vector into
some low-dimensional subcomponents.

– Evolve each subcomponent by a traditional optimization
algorithm for a predefined number of generations using
a round-robin strategy.

– Merge the solutions of all subcomponents to construct n-
dimensional solutions to evaluate the individuals in each
of the subcomponents.

– Stop the evolutionary process if termination condition is
satisfied.

Over the past decades, various metaheuristic optimization
algorithms including evolutionary programming (Liu et al.
2001), particle swarm optimization (PSO) (Van den Bergh
and Engelbrecht 2004; Sun et al. 2012; Li and Yao 2012,
2009), artificial bee colony (ABC) (Ren and Wu 2013; Chen
et al. 2008), evolutionary algorithms (EAs) (Liu et al. 2001;
Singh and Ray 2010), and differential evolution (DE) (Yang
et al. 2008a, b; Chen et al. 2010) have been incorporated
into the CC framework for tackling LSGO problems. The
major challenge of CC algorithms is developing an appropri-
ate decomposition method to construct the subcomponents
with the minimum interdependency according to the inter-
action among variables (Mahdavi et al. 2015; Chen et al.
2010; Omidvar et al. 2014a). Also, several CC algorithms
with different decomposition strategieswere proposedwhich

123

Multilevel framework for large-scale global optimization

can assign the interacting variables into the same subcompo-
nents and show an excellent performance such as MLCC
(Yang et al. 2008b), DECC-G (Yang et al. 2008a), CCEA-
AVP (Singh and Ray 2010), CCVIL (Chen et al. 2010),
CCOABC (Ren and Wu 2013), CC-CMA-ES (Liu and Tang
2013), DECC-DG (Omidvar et al. 2014a), HDIMA (Sayed
et al. 2012b), DIMA (Sayed et al. 2012a), DM-HDMR (Mah-
davi et al. 2014), and MLSoft (Omidvar et al. 2014b), etc.
For more detailed information about these methods and their
challenge to decompose LSGO problems, please refer to
(Mahdavi et al. 2015).

Most of the CC and decomposition methods have been
evaluated only on LSGO problems with the equal bal-
anced subcomponents while the most real-world problems
contain imbalance subcomponents (Li et al. 2013; Omid-
var et al. 2015, 2014a). Recently, several design features
were proposed in Omidvar et al. (2015) to develop large-
scale optimizationbenchmark suites for better approximating
real-world problems of which the imbalance among subcom-
ponents of an LSGO problem is one of these features. A
major challenge part of CC algorithms in solving imbalanced
LSGO problems lies in the decomposition step. Recently,
some decomposition strategies by the automatic identifica-
tion of variable interactions and high accuracywere proposed
on LSGO problems with balanced subcomponents. Chen
et al. (2010) proposed a decomposition method (CCVIL)
based on the changes of the fitness function value among
variables which can adaptively construct subcomponents by
learning the interaction among the decision variables. Since
the imbalanced LSGO problems have some variables with
the significant influence and some variables with the small
influence on the fitness value, CCVIL cannot correctly com-
pare the fitness values to detect interaction among variables
and also, it needs an excessive search in the learning step.
Omidvar et al. (2014a) introduced the differential grouping
approach (DECC-DG) which compares the approximation
of the gradient to detect interactions among variables. The
performance of DECC-DG decreases to decompose imbal-
anced LSGO problems (Omidvar et al. 2015) since it fails to
compare the changes of the fitness values on the problems
including variables with the various influences. In Mahdavi
et al. (2014), a decompositionmethod,DM-HDMR,was pro-
posed based on the obtained correlations of high-dimensional
model representation (first-order RBF-HDMR). The first-
order RBF-HDMR cannot correctly model the imbalanced
functions therefore DM-HDMR has the low accuracy to
detect the interaction among variables on the imbalanced
LSGO problems. Therefore, finding an optimal decompo-
sition method for the LSGO problems becomes extremely
complicated when there are some imbalance subcomponents
among them.

On the other hand, CC algorithms divide the computa-
tional budget equally among all subcomponents, therefore

they waste the computational budget for optimizing subcom-
ponents with the low effect on the global fitness (Omidvar
et al. 2011, 2014a). In such scenarios, if decomposition
method can obtain a near-ideal decomposition of the deci-
sion variables, CC algorithms still lose their efficiency
to tackle with imbalanced LSGO problems. In Omidvar
et al. (2011, 2014a), a contribution-based cooperative co-
evolution (CBCC) method was proposed which spends more
computational budget on the subcomponents with the maxi-
mum influence on the global fitness.

2.2 Sensitivity analysis

The computational models of real-world problems are often
complex, computationally expensive, with many input para-
meters, andnon-linear relations. Sensitivity analysismethods
are very powerful tools to study relationships among model
parameters and identify the significant input parameters with
the most impact on the outputs of the model. Saltelli et al.
(2008) categorized sensitivity analysis methods into three
main classes: screening, local, and global methods. Local
methods provide information on the model behavior only
around a reference point. Global sensitivity analysis pro-
vides information on how the entire range of the variation
in the model outputs can be influenced by the variation of its
input parameters. Screenmethods can detect the most impor-
tant input parameters which have a major influence on the
model outputs. We applied a particular screening method,
Morris screening, to identify important input parameters.
Morris (1991) proposed the multiple elementary effects con-
cept to compute two sensitivity measures. An elementary
effect is defined as follows. Assume each model input para-
meter Xi , i = 1, . . . , k is divided into p levels in the space
of the input parameters. An elementary effect E Ei is defined
for each input parameter i as follows:

E Ei (�x) = f (x1, . . . , xi−1, xi + �, . . . , xn) − f (�x)/�,

(1)

where� is a value in {1/(p−1), . . . , 1−1/(p−1)} and p is
the number of levels. For each input factor, Morris provides
two sensitivity measures μ and σ by sampling r elementary
effects which are the mean and the standard deviation distri-
bution of E Ei . The required number of simulations is equal
to r(k + 1). In the computation of the μ value, E Ei values
can be of opposite sign and cancel each other. For this rea-
son, Campolongo et al. (2007) proposed the mean (μ∗) of
the absolute elementary values instead of the μ value. Also,
they suggested the choice of r = [10, 20], p = [4, 8], and
� = p/2(p − 1). In addition, we employed the mean (μ∗)
of the absolute elementary values and r = 20, p = 8, and
� = p/2(p − 1).

123

S. Mahdavi et al.

3 Multilevel optimization framework based on the
variable effect

In the most real-world problems, a large number of variables
must be considered; but often shaping of the landscape is
dominated by significant variables, i.e., variables with the
most influence on the objective function. Most of the LSGO
optimization algorithms do not discriminate among variables
and consider equally all variables while some variables of
an imbalanced LSGO problem have more effects on the fit-
ness values.Wepropose a newoptimization frameworkbased
on the most significant variables affecting on the objective
function in which the problem can be decomposed into sev-
eral low-dimensional levels of variables according to their
effects. While CC algorithms focus mostly on decomposing
an LSGO problem into nonseparable and separable subcom-
ponents according interaction among variables, the proposed
framework considers only imbalance feature, effects of
variables on the objective function value, to increase the per-
formance of LSGO algorithms. The main idea is that, the
low-dimensional levels of decision variables with the most
effect are identified and optimized at a few iterations. Then,
all decision variables are optimized at remaining iterations
with starting the fitter sub-solutions of important variables.
By constructing the levels with the smaller decision vari-
able space, the LSGO problem can transform into a problem
with the smaller dimension but having higher contribution to
the fitness value. In this section, we describe the details of
MOFBVE algorithm. Let us start with the simplest version of
the MOFBVE, Bilevel, which describes a model composed
of three sequential optimization stages with two different
search spaces. The steps of Bilevel optimization framework
are shown in theAlgorithm1.TheproposedBilevel optimiza-
tion framework has two different levels of search space, the
important variables and all variables. It divides the optimiza-
tion procedure into three stages: (1) the first stage optimizes
LSGO problems as a whole at a few iterations (line 19); (2)
the second stage optimizes only the important variables of
LSGO problems at a few iterations (line 26), (3) and the
last stage optimizes LSGO problems as a whole at remain-
ing iterations (line 32). Every optimizer can be used as the
subcomponent optimization algorithm in the both levels. We
apply a self-adaptive DE with the neighborhood search algo-
rithm (namely SaNSDE) (Yang et al. 2008c) in all stages, as
the parent algorithm.

The sensitivity analysis method, called Morris method, is
used to construct low-dimensional levels of variables accord-
ing to their effects on the fitness value. First, Morris method
is used to compute the main effect of each variable by
two sensitivity measures μ∗ and σ (line 6). Then, the k-
means clustering method (k = 2) (MacQueen et al. 1967)
is employed to cluster the variables of LSGO problems with
two obtained features μ� and σ with Morris method (line

Algorithm 1 :(best,best_val) ⇐ Bilevel(f unc, n,
max_evaluate)
1: // f unc, n, and max_evaluate are optimization function, the

//dimension of the function, and the maximum number of fitness
//evaluations, respectively.

2: pop ⇐ initialize(popsi ze, n)

3: //popsi ze is the population size.
4: max_cycle = max_evaluate

popsi ze
5: //max_cycle is the maximum number of optimization cycles.
6: (μ, σ) ⇐ Morris(n) //Computing Morris sensitivity measures.
7: (G O) ⇐ K-means(n, μ, σ, 2) //Clustering variables into 2 groups

//according to two features μ and σ .
8: for s = 1 to 2 do
9: Calculate the main effect by Equation (2) for each subcomponent

s
10: end for
11: Sort array GO, including 2 groups, in descending order according

to value EFs
12: DK ⇐ length(G O[1]) //Computing the size of the group 1 to

//determine the number of iteration, i.e., I teropt .
13: if DK < 50 then
14: I teropt = DK × 20
15: else
16: I teropt = DK × 10
17: end if
18: (best, best_val) ⇐ evaluate(pop)

19: pop ⇐ optimizer(best, pop, I teropt)
20: (best, best_val) ⇐ evaluate(pop)

21: i = I teropt
22: //Start optimizing the group 1 or the level 1
23: index_subpop ⇐ G O[1]
24: subpop ⇐ pop(:, index_subpop)

25: //the subpop is a separate subpopulation of population including
//the corresponding variables of the group 1

26: subpop ⇐ optimizer(best, subpop, I teropt)
27: pop(:, index_subpop) ⇐ subpop
28: (best, best_val) ⇐ evaluate(pop)

29: i = i + 2 × I teropt
30: //Start optimizing all variables at level 2
31: I teropt = max_cycle − i
32: pop ⇐ optimizer(best, pop, I teropt)
33: (best, best_val) ⇐ evaluate(pop)

7). The variables with the similar effects on the fitness value
are clustered into the same group by using the k-means algo-
rithm.After that, the contribution of each group s is computed
as follows:

EFs =
∑m

i=1 μ�
i∑n

i=1 μ�
i
, (2)

where parameters m and n are the number of variables in
the group s and all variables of the function, respectively,
and parameter μ�

i is Morris sensitivity measure μ� for the
variable i . The measure EFs can rank the importance of the
various groups in terms of their influence on the fitness value.
First, a low-dimensional level of the important variables is
identified with the most contribution to the fitness function
i.e., the groupwithmaximumEFs . In the first stage, a level of
the problem search space with all decision variables is opti-

123

Multilevel framework for large-scale global optimization

Algorithm 2 :(best,best_val) ⇐ MOFBVE(f unc, n,
max_evaluate, k)
1: // f unc, n, max_evaluate, and k are the optimization function, the

//dimension of the function, the maximum number of fitness eval-
//uations, and the number of levels in the MOFBVE algorithms,
//respectively.

2: pop ⇐ initialize(popsi ze, n)

3: //popsi ze is the population size.
4: max_cycle = max_evaluate

popsi ze
5: //max_cycle is the maximum number of optimization cycles.
6: (μ, σ) ⇐ Morris(n) //Computing Morris measures.
7: (G O) ⇐ K-means(n, μ, σ, k) //Clustering variables into k groups

//according to two features μ and σ .
8: for s = 1 to k do
9: Calculate the main effect by Equation (2) for each subcomponent

s
10: end for
11: Sort array GO, including k groups, in descending order according

to value EFs
12: (best, best_val) ⇐ evaluate(pop)

13: pop ⇐ optimizer(best, pop, I teropt)
14: (best, best_val) ⇐ evaluate(pop)

15: i = I teropt //Variable i is the total used iterations so far.
16: for j = 1 to k − 1 do
17: DK ⇐ length(G O[j]) Computing the size of the //group j to

//determine the number of iteration, i.e., I teropt .
18: I teropt = DK × 10
19: //Start optimizing the group j or the level j .
20: index_subpop ⇐ G O[j]
21: subpop ⇐ pop(:, index_subpop)

22: //the subpop is a separate subpopulation of population including
//the corresponding variables of the group j

23: subpop ⇐ optimizer(best, subpop, I teropt)
24: pop(:, index_subpop) ⇐ subpop
25: (best, best_val) ⇐ evaluate(pop)

26: if j == k − 1 then
27: i = i + I teropt
28: else
29: pop ⇐ optimizer(best, pop, I teropt)
30: (best, best_val) ⇐ evaluate(pop)

31: i = i + 2 × I teropt
32: end if
33: end for
34: //Start optimizing all variables at level k.
35: I teropt = max_cycle − i //Computing remaining iterations.
36: pop ⇐ optimizer(best, pop, I teropt)
37: (best, best_val) ⇐ evaluate(pop)

mized at a few determined iterations in the lines 18–20 (10
or 20× D1, where D1 is the dimension of the most important
group). If the dimension of the most important group is less
than 50, then the number of optimization iterations is set to
20×D1; otherwise it is set to 10×D1 (lines 12–17). It should
be noted that in the Bilevel algorithm, when the number of
important variables is small (less than 50), they are optimized
in more iterations. The reason for this is that the Bilevel algo-
rithm uses the important variables in only one stage therefore
it needs more number of optimization iterations for impor-
tant variables to gain their effects on the optimization process
especially when the number of variables becomes small.

Then, the low-dimensional level of the important variables is
optimized at the some iterations similar to previous stage
(lines 23–28). The important feature of low-dimensional
level is mapping an LSGO problem into a problem with a
small number of variables but more influence on the fitness
value. Therefore, the optimization algorithm with the search
space including the most important group can obtain the effi-
cient sub-solutions for the original problem.When this group
is being optimized, all other variables are kept fixed. The
best member of the first stage is employed to the other vari-
ables. Then, the obtained solutions from the low-dimensional
level will be used as the initial population at the last stage.
In the last stage (lines 31–33), the optimization algorithm
with the original search space can start by the fitter candidate
sub-solutions for more important variables which acceler-
ate the convergence rate of the optimization algorithm at
remaining iterations. Note that, if the low-dimensional level
of the important variables are optimized at the first stage, then
MOFBVE may converge to a local optimum. Therefore, in
the first stage ofMOFBVE, considering all variables reduces
the possibility of population attraction to a local optimum.

Now, we describe a generalized version of MOFBVE
where the number of levels is more than two (i.e., k > 2)
and its steps are shown in the Algorithm 2. First, the decision
variables of an LSGO problem are clustered to k groups by
using k-means clustering method with two sensitivity mea-
sures μ�

i and σ (lines 6–7). The measure EFs is computed
for all k groups (lines 8–10) and then they are sorted in the
descending order according to the value EFs (line 11). Then,
the top k −1 groups are selected as k −1 levels of the search
space and optimized at a sequence of some stages. There-
fore, the k-MOFBVE includes the low-dimensional k − 1
levels of the search space and a level of the problem search
space with all decision variables. Also, an intra-stage, as the
interconnection stage, is located between two stages of top
low-dimensional levels and optimizes all variables (lines 29–
30). In the first stage (lines 12–14), a level search space of
the problem with all decision variables is optimized at a few
determined iterations (10 × D1, where D1 is the dimension
of the most important group). In the second stage, the low-
dimensional level of the important variables (in the group
with maximum EFs) is optimized at the some iterations sim-
ilar to previous stage. Then, all variables are optimized at
the some iterations similar to previous stage in the inter-
connection stage. In the next stage, the second group in
the descending arrangement of groups is optimized at a few
determined iterations (10 × D2, where D2 is the dimension
of the second group). This procedure continues in the similar
way for all k − 1 low-dimensional levels of the search space
(lines 16–33). Finally, at level k, an optimization algorithm
optimizes all variables at remaining iterations (lines 35–37).
Note that since k-MOFBVE algorithm uses the most impor-
tant variables with the different orders of effects in some its

123

S. Mahdavi et al.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.5

1

1.5

2

x
y

z

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

dx

dy

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

2

4

6

8

10

x
y

z

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

dx

dy

(a) Function f (x,y) = x2 + y2

(c) Function f1(x, y) = x2 + 16y2

(b) Gradient of function f

(d) Gradient of function f1

Fig. 1 The gradient of the functions f and f1 for example 1

stages, it takes the benefit of important variables with 10×Di

iterations at each level i .
In general, each low-dimensional level i of the search

space, the group i th in the descending arrangement of groups,
is optimized at a few determined iterations in a stage (lines
20–23). While all other variables are held constant and then
the obtained candidate solutions for i th group from the stage
k will be used as the initial candidate solutions at the intercon-
nection level. At interconnection level, all decision variables
are optimized at a few iterations (line 29)which is equal to the
number of the previous low-dimensional level iterations and
then the obtained solutionswill be used as the initial solutions
for optimizing the next level (i +1) of the search space at next
stage. The interconnection level can switch between explo-
ration in larger and smaller search spaces and is beneficial
for exploring more promising regions around the obtained

candidate sub-solutions of previous level. In MOFBVE, the
search space of the optimization problem varies through the
different levels according to ranking the importance of vari-
ables. The most important feature of this sequential mapping
is the reduction of the search space to obtain the fitter candi-
date sub-solutions for groups including the most important
variables with the different orders of effects. The last stage of
MOFBVE takes the obtained solution of the previous stages
as an initial population and improves them further.

4 Analyzing the imbalance feature impact
on the optimization methods

In this section, a theorem and some examples are presented in
order to gain a better understanding of how considering the
effect of variables can be beneficial for optimizing imbal-

123

Multilevel framework for large-scale global optimization

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

10

20

30

40

50

x
y

z

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

dx

dy

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

50

100

150

200

250

x
y

z

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

dx

dy

(a) Function f (x, y) = x2 − 10. cos(2πx) + 10 + y2 −
10.cos(2πy) + 10

(b) Gradient of function f

(c) Function f1(x, y) = x2 − 10. cos(2πx) + 10 +
255y2 − 10.cos(30πy) + 10

(d) Gradient of function f1

Fig. 2 The gradient of the functions f and f1 for example 2

anced problems effectively. We first provide the following
definitions based on the descriptions which are given in sev-
eral studies (Li et al. 2013; Omidvar et al. 2014a; Doerr et al.
2013). A partially additively separable function is defined as
follows (Li et al. 2013; Omidvar et al. 2014a):

F(�x) =
m∑

k=1

fk(xvk), v = [1, V], (3)

where �x = (x1, x2, . . . , xn) ∈ Rn is the decision variable
vector, the function F(x) is decomposed into m subcompo-
nents where each subcomponent has V -dependent variables.
A partially additively weighted separable function is defined
as follows (Doerr et al. 2013):

F(�x) =
m∑

k=1

wk . fk(xvk), v = [1, V] (4)

for 0 < w1 < wk < · · · < wm (5)

This type of functions indicates the modular nature of the
most real-world problems (Li et al. 2013; Omidvar et al.
2014a).

Also, we review the properties of the gradient vector in
the optimization methods which is used to define following
theorem. In the mathematics, the gradient is a vector-valued
functionwhose components are the n partial derivatives of f .
Many optimization methods concern the gradient vector to
find andmove towards the optimum of a problem. The signif-

123

S. Mahdavi et al.

Table 1 Results of Bilevel and
MOFBVE with k (3, 4, and 5)
on the modified CEC-2010 test
functions

Function 3-MOFBVE 4-MOFBVE 5-MOFBVE Bilevel

f9 Mean 1.42e+11† 1.44e+11† 1.36e+11† 1.08e+11

Std 2.68e+10 2.46e+10 2.62e+10 1.80e+10

f10 Mean 1.04e+07‡ 1.03e+07‡ 1.11e+07≈ 1.18e+07

Std 2.02e+06 1.92e+06 1.33e+06 1.30e+06

f11 Mean 2.66e+04≈ 1.78e+04‡ 2.68e+04† 2.57e+04

Std 2.32e+04 1.45e+04 5.19e+04 8.83e+03

f12 Mean 1.36e+06† 1.44e+06≈ 5.26e+05‡ 1.12e+06

Std 5.38e+05 1.19e+06 1.72e+05 5.88e+05

f13 Mean 1.11e+07‡ 9.42e+06≈ 1.20e+07≈ 1.25e+07

Std 5.91e+06 7.04e+06 8.24e+06 7.69e+06

f14 Mean 1.64e+12† 1.68e+12† 1.63e+12† 1.40e+12

Std 3.24e+11 3.60e+11 2.86e+11 2.23e+11

f15 Mean 9.67e+07‡ 9.04e+07‡ 9.55e+07‡ 1.02e+08

Std 9.46e+06 1.08e+07 1.32e+07 1.12e+07

f16 Mean 9.54e+05‡ 5.77e+05‡ 6.55e+05‡ 1.28e+06

Std 4.71e+05 4.16e+05 5.26e+05 2.51e+05

f17 Mean 3.68e+07≈ 3.52e+07≈ 2.01e+07‡ 2.84e+07

Std 4.83e+07 5.71e+07 1.34e+07 1.60e+07

f18 Mean 2.36e+08‡ 5.57e+08† 1.49e+08‡ 3.00e+08

Std 1.87e+08 1.97e+09 6.36e+07 1.91e+08

w/t/l 5/2/3 4/3/3 5/2/3 –

icant properties of the gradient vector (Arora 2004; Rao and
Rao 2009) are as follows: (1) the gradient vector �c of a func-
tion f (x1, x2, . . . , xn) at the point x∗ = (x1∗, x2∗, . . . , xn

∗)
is orthogonal to the tangent hyperplane for the surface
f (x1, x2, . . . , xn) = constant ; (2) the gradient shows a
direction of maximum rate of increase for the function f (x)

at the point x∗; (3) the maximum rate of change of F(�x) at
any point x∗ is the magnitude of the gradient vector. These
properties show that the gradient vector at any point x∗ rep-
resents a direction of maximum increase in the function f (x)

and the rate of increase is the magnitude of the vector.

Theorem 1 If F(�x) is partially additively weighted sep-
arable function with the dimension n ≥ m ≥ 2 and
m subcomponents, then the subcomponents with the more
effects on the objective function have more impacts than other
subcomponents on the direction of steepest ascent and max-
imum change rate of the function.

Proof As mentioned above, the gradient vector indicates the
direction of steepest ascent and themaximum rate of function
change which is the magnitude of the gradient vector. There-
fore, we first prove that the subcomponents with the more
effects have more impacts on the magnitude and direction of
the gradient. The gradient of the function F(�x) is computed
as follows:

F(�x) =
m∑

k=1

wk . fk(xvk), where xvi = (xsi , . . . , xli) (6)

∇F = w1.∇ f1 + w2.∇ f2 + · · · + wm .∇ fm (7)

= w1.

l1∑

z=s1

∂ f1
∂xz

.�ez + w2.

l2∑

z=s2

∂ f2
∂xz

.�ez + · · · (8)

+ wm .

lm∑

z=sm

∂ fm

∂xz
.�ez (9)

=
m∑

k=1

wk .

lb∑

z=sb

∂ fk

∂xz
.�ez, where ezi =

{
1 ∀i = z

0 otherwise
,

(10)

and therefore||∇F || =

√
√
√
√
√

k∑

b=1

(

wb.

lb∑

z=sb

∂ fb

∂xz

)2

(11)

and the subcomponents have the various effects and 0 <

w1 < wk < · · · < wm thus the partial derivatives of the
gradient vector can be sorted as follows:

w1.

l1∑

z=s1

∣
∣
∣
∣
∂ f1
∂xz

∣
∣
∣
∣ < w2.

l2∑

z=s2

∣
∣
∣
∣
∂ f2
∂xz

∣
∣
∣
∣ < · · · < wm .

lm∑

z=sm

∣
∣
∣
∣
∂ fm

∂xz

∣
∣
∣
∣

(12)

�

123

Multilevel framework for large-scale global optimization

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
10000

100000

1e+06

1e+07

Evaluations

Bilevel
3−MOFBVE
4−MOFBVE
5−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

Evaluations

Bilevel
3−MOFBVE
4−MOFBVE
5−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
1e+12

1e+13

1e+14

1e+15

1e+16

Evaluations

Bilevel
3−MOFBVE
4−MOFBVE
5−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
1e+07

1e+08

1e+09

Evaluations

Bilevel
3−MOFBVE
4−MOFBVE
5−MOFBVE

(a) f11 (b) f12

(c) f14 (d) f15

Fig. 3 Convergence plots of f11, f12, f14, and f15 of the modified CEC-2010 test functions. The results of the Bilevel framework and k-MOFBVE
algorithms were averaged over 25 runs. The vertical axis is the function value and the horizontal axis is the number of function evaluations

Hence, the important subcomponents have more effects
on the magnitude and direction of the gradient vector. There-
fore, it is reasonable that by focusing on important variable,
an optimization algorithm can find the promising regions,
because the search space is directed to move more toward
the direction of steepest ascent. MOFBVE attempts to iden-
tify the most important variables with the Morris method
and then by mapping an LSGO problem into a smaller size
problem, it spends more iteration for variables with higher
contribution to find promising solutions.

Note that theorem 1 has been proved for a partially addi-
tivelyweighted separable functionwith the dimension n ≥ 2,
but two examples are presented in two dimensions since two-
dimensional functions and their gradients can be visualized
better than higher dimensions.

Example 1 Consider a function f (x, y) = x2 + y2 with two
variables which have the equal effects. First, μ�

i values of

two variables are computed by the Morris method. Then, the
values of EFs are computed by Morris method as follows:

EF1 = μ�
1

∑2
i=1 μ�

i

= 1.01

2.02
= 0.5 (13)

EF2 = μ�
2

∑2
i=1 μ�

i

= 1.01

2.02
= 0.5 (14)

Therefore, the Morris method identifies that two variables
have the equal effects. For defining a imbalanced function,
we change the above function as follows:

f1(x, y) = x2 + 16y2 (15)

this function has two variables with the unequal effects.
First, μ�

i values of two variables are computed by the Morris
method. Then, the values of EFs are computed by Morris
method as follows:

123

S. Mahdavi et al.

Table 2 Results of Bilevel-I and
MOFBVE-I with k (3, 4, and 5)
algorithms on the modified
CEC-2010 test functions

Function 3-MOFBVE-I 4-MOFBVE-I 5-MOFBVE-I Bilevel-I

f9 Mean 1.20e+11≈ 1.11e+10≈ 1.25e+10≈ 1.22e+11

Std 2.29e+10 2.43e+10 2.76e+10 3.13e+10

f10 Mean 1.12e+07≈ 1.06e+07≈ 1.20e+07≈ 1.14e+07

Std 1.75e+06 1.50e+06 1.57e+06 1.51e+06

f11 Mean 1.64e+04‡ 1.24e+04‡ 1.25e+04‡ 1.51e+05

Std 1.17e+04 1.10e+04 9.36e+03 9.03e+04

f12 Mean 1.11e+06‡ 6.83e+05‡ 9.39e+05‡ 1.56e+06

Std 1.09e+06 2.85e+05 3.38e+05 7.72e+05

f13 Mean 8.27e+06‡ 1.06e+07‡ 1.01e+07‡ 1.31e+07

Std 3.78e+06 3.62e+06 3.85e+06 4.05e+06

f14 Mean 1.52e+12≈ 1.59e+12≈ 1.40e+012≈ 1.51e+12

Std 3.24e+11 3.55e+011 2.69e+011 2.97e+11

f15 Mean 1.01e+08≈ 9.72e+07≈ 1.01e+08≈ 1.01e+08

Std 1.25e+07 1.06e+07 1.14e+07 8.84e+06

f16 Mean 5.57e+05‡ 4.70e+05‡ 7.75e+05‡ 2.32e+06

Std 3.22e+05 2.11e+05 4.00e+05 9.38e+05

f17 Mean 2.55e+07≈ 1.61e+07‡ 2.09e+07‡ 4.18e+07

Std 1.80e+07 7.06e+06 1.47e+07 6.40e+07

f18 Mean 1.53e+08≈ 1.39e+08≈ 3.68e+08≈ 2.67e+08

Std 8.14e+07 1.05e+08 7.06e+08 3.39e+08

w/t/l 4/6/0 5/5/0 5/5/0 –

Symbols ‘†’, ‘‡’, and ‘≈’ denote the compared algorithms are worse than, better than, or similar to
Bilevel-I, respectively

Table 3 Results of Bilevel and
MOFBVE with k (3, 4, and 5)
on the modified normal
CEC-2010 test functions

Function 3-MOFBVE 4-MOFBVE 5-MOFBVE Bilevel

f9 Mean 3.18e+10≈ 3.31e+10‡ 2.85e+10≈ 2.57e+10

Std 8.86e+09 8.20e+09 8.12e+09 6.68e+09

f10 Mean 2.06e+05≈ 1.96e+05≈ 1.97e+05≈ 2.05e+05

Std 2.43e+04 2.37e+04 3.09e+04 2.68e+04

f11 Mean 1.54e+03≈ 1.36e+03‡ 1.06e+03‡ 1.84e+03

Std 7.25e+02 5.88e+02 4.48e+02 5.67e+02

f12 Mean 1.30e+06≈ 1.20e+06≈ 6.89e+05‡ 9.50e+05

Std 9.91e+05 6.69e+05 4.36e+05 2.91e+05

f13 Mean 1.45e+07≈ 1.25e+07‡ 1.12e+07‡ 1.99e+07

Std 1.10e+07 8.05e+06 9.12e+06 1.04e+07

f14 Mean 3.46e+12≈ 3.55e+12≈ 3.56e+12≈ 3.36e+12

Std 7.97e+11 7.82e+11 8.13e+11 9.65e+11

f15 Mean 3.06e+07≈ 2.86e+07‡ 3.02e+07‡ 3.25e+07

Std 3.98e+06 4.43e+06 2.78e+06 4.26e+06

f16 Mean 1.95e+05≈ 1.26e+05‡ 1.76e+05‡ 2.28e+05

Std 1.94e+05 8.87e+04 3.30e+05 9.74e+04

f17 Mean 8.61e+07≈ 8.14e+07† 1.60e+07‡ 4.07e+07

Std 1.26e+08 9.97e+07 1.60e+07 5.70e+07

f18 Mean 2.40e+10≈ 2.34e+10≈ 2.50e+10≈ 3.24e+10

Std 1.62e+10 9.92e+09 1.10e+10 2.49e+10

w/t/l 0/10/0 5/4/1 6/4/0 –

Symbols ‘‡’, ’†’, and ‘≈’ denote the compared algorithms are worse than, better than, or similar to Bilevel,
respectively

123

Multilevel framework for large-scale global optimization

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
1000

10000

100000

Evaluations

Bilevel
3−MOFBVE
4−MOFBVE
5−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

Evaluations

Bilevel
3−MOFBVE
4−MOFBVE
5−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
1e+12

1e+13

1e+14

1e+15

1e+16

1e+17

Evaluations

Bilevel
3−MOFBVE
4−MOFBVE
5−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+061e+07

1e+08

1e+09

Evaluations

Bilevel
3−MOFBVE
4−MOFBVE
5−MOFBVE

(a) f11 (b) f12

(c) f14 (d) f15

Fig. 4 Convergence plots of f11, f12, f14, and f15 of the modified nor-
mal CEC-2010 test functions. The results of the Bilevel framework and
k-MOFBVE algorithms were averaged over 25 runs. The vertical axis

is the function value and the horizontal axis is the number of function
evaluations

EF1 = μ�
1

∑2
i=1 μ�

i

= 0.99

16.76
= 0.06 (16)

EF2 = μ�
2

∑2
i=1 μ�

i

= 15.77

16.76
= 0.94 (17)

Therefore, the Morris method identifies the variable y as the
important variable and the multilevel algorithm spends more
optimization iterations to achieve better solutions. Figure 1
shows the gradient and function plots for two functions f1
and f . The arrows in Fig. 1 show the magnitude and direc-
tion of the gradient. It can be seen from Fig. 1, the arrows for
the function f are parallel to the diagonal lines y = x and
y = −x , therefore the impact of variables x and y is equal on
the gradient vector. Also, the arrows for the function f1 are
approximately parallel to the y-axis thus the impact of vari-
able y is more than variable x on the gradient vector and the
direction of the gradient is about in the direction of the y-axis.

Example 2 Consider a function f (x, y) = x2 − 10.
cos(2πx)+ 10+ y2 − 10.cos(2πy)+ 10 with two variables
which have the equal effects. First,μ�

i values of two variables
are computed by the Morris method. Then, the values of EFs

are computed by Morris method as follows:

E F1 = μ�
1

∑2
i=1 μ�

i

= 23.65

47.58
= 0.5 (18)

E F2 = μ�
2

∑2
i=1 μ�

i

= 23.93

47.58
= 0.5 (19)

Therefore, the Morris method identifies that two variables
have the equal effects. For defining a imbalanced function,
we change the above function as follows:

f1(x, y) = x2 − 10. cos(2πx) + 10 + 255y2

−10.cos(30πy) + 10 (20)

123

S. Mahdavi et al.

Table 4 Results of Bilevel-I
and MOFBVE-I with k (3, 4,
and 5) on the modified normal
CEC-2010 test functions

Function 3-MOFBVE-I 4-MOFBVE-I 5-MOFBVE-I Bilevel-I

f9 Mean 2.68e+10≈ 2.50e+10≈ 2.57e+10≈ 2.66e+10

Std 2.68e+10 6.91e+09 7.29e+09 8.57e+09

f10 Mean 2.08e+05≈ 2.12e+05≈ 2.08e+05≈ 2.29e+05

Std 2.08e+05 2.60e+04 2.20e+04 7.40e+04

f11 Mean 9.57e+02‡ 9.71e+02‡ 1.30e+03≈ 1.22e+03

Std 9.57e+02 1.28e+02 4.64e+02 2.30e+02

f12 Mean 9.05e+05‡ 7.19e+05‡ 1.02e+06‡ 1.89e+06

Std 9.05e+05 3.14e+05 4.31e+05 1.99e+06

f13 Mean 1.77e+07≈ 2.10e+07≈ 2.03e+07≈ 1.95e+07

Std 1.77e+07 7.91e+06 7.66e+06 1.05e+07

f14 Mean 4.00e+12≈ 3.49e+12≈ 3.48e+12≈ 3.34e+12

Std 4.00e+12 9.99e+11 1.04e+12 9.34e+11

f15 Mean 2.88e+07‡ 2.73e+07‡ 3.11e+07‡ 3.51e+07

Std 2.88e+07 3.86e+06 4.01e+06 5.25e+06

f16 Mean 1.88e+05≈ 1.12e+05≈ 1.05e+05‡ 1.57e+05

Std 1.88e+05 8.30e+04 1.04e+05 8.71e+04

f17 Mean 2.30e+07‡ 1.66e+07‡ 3.35e+07‡ 7.24e+07

Std 2.30e+07 1.22e+07 3.64e+07 6.88e+07

f18 Mean 2.27e+10≈ 2.54e+10≈ 2.85e+10≈ 2.80e+10

Std 2.27e+10 9.29e+09 1.91e+10 1.31e+10

w/t/l 4/6/0 4/6/0 4/6/0 –

Symbols ‘†’, ‘‡’, and ‘≈’ denote the compared algorithms are worse than, better than, or similar to Bilevel,
respectively

This function has two variables with the unequal effects.
First, μ�

i values of two variables are computed by the Morris
method. Then, the values of EFs are computed by Morris
method as follows:

EF1 = μ�
1

∑2
i=1 μ�

i

= 23.53

241.08
= 0.1 (21)

EF2 = μ�
2

∑2
i=1 μ�

i

= 217.55

241.08
= 0.9 (22)

Therefore, the Morris method identifies the variable y as the
important variable and the multilevel algorithm spends more
optimization iterations to achieve better solutions. Figure 2
shows the gradient and function plots for two function f1
and f . The arrows in Fig. 2 show the magnitude and direc-
tion of the gradient. It can be seen in Fig. 2, the arrows for
the function f are parallel to the diagonal lines y = x and
y = −x , therefore the impact of variables x and y is equal
on the gradient vector. Also, the arrows for the function f1
are approximately parallel to the y-axis, thus the impact of
variable y is more than variable x on the gradient vector
and the direction of the gradient is in the direction of the
y-axis.

5 Experimental studies and discussion

5.1 Experiment setup

In order to evaluate the performance of proposed MOFBVE
algorithm, we have utilized the same set of modified CEC-
2010 benchmark functions which are used in the LSGO field
by Chen et al. (2010); Omidvar et al. (2014a); Mahdavi
et al. (2014); Zhao et al. (2011); Wang et al. (2013); Molina
et al. (2010) and also a new set of benchmark functions
based on the CEC-2010 benchmark functions. The CEC-
2010 benchmark functions (Appendix B) were provided by
the CEC-2010 Special Session and Competition on LSGO
(Tang et al. 2010). In this benchmark test set, there are five
types of functions as follows (Appendix B):

– C1: Separable functions (f1– f3)
– C2: Single-group m-nonseparable functions (f4– f8)
– C3: n

2m -group m-nonseparable functions (f9– f13)
– C4: n

m -group m-nonseparable functions (f14– f18)
– C5: Nonseparable functions (f19– f20),

where n is the dimension of the function and m is the number
of variables in each nonseparable subcomponent. In themod-
ifiedCEC-2010 benchmark functions,Omidvar et al. (2014a)

123

Multilevel framework for large-scale global optimization

Table 5 Results of Bilevel and
MOFBVE with k (3, 4, and 5)
on the CEC-2013 LSGO
benchmark test functions

Function 3-MOFBVE 4-MOFBVE 5-MOFBVE Bilevel

f4 Mean 9.92e+09≈ 9.13e+09≈ 7.29e+09‡ 9.09e+09

Std 5.01e+09 3.08e+09 3.63e+09 2.60e+09

f5 Mean 2.77e+06≈ 2.80e+06≈ 3.01e+06≈ 2.69e+06

Std 4.19e+05 3.61e+05 5.43e+05 5.30e+05

f6 Mean 9.33e+04≈ 9.25e+04≈ 8.81e+04≈ 8.56e+04

Std 2.91e+04 2.15e+04 2.60e+04 2.41e+04

f7 Mean 5.85e+06≈ 9.35e+06≈ 6.53e+06≈ 5.86e+06

Std 2.21e+06 1.26e+07 2.80e+06 2.18e+06

f8 Mean 1.81e+13‡ 2.54e+13≈ 2.88e+13≈ 2.31e+13

Std 1.37e+13 1.53e+13 1.78e+13 1.13e+13

f9 Mean 2.65e+08≈ 2.62e+08≈ 1.94e+08‡ 2.81e+08

Std 3.16e+07 2.62e+07 3.30e+07 3.09e+07

f10 Mean 2.09e+04‡ 2.55e+03‡ 1.89e+03‡ 3.34e+04

Std 2.22e+04 3.31e+02 1.15e+03 2.17e+04

f11 Mean 4.55e+08≈ 4.48e+08≈ 3.83e+09≈ 7.64e+08

Std 3.66e+08 3.97e+08 1.34e+10 1.04e+09

f13 Mean 5.31e+08≈ 5.68e+08≈ 6.56e+08≈ 5.27e+08

Std 1.95e+08 2.195e+08 2.80e+08 1.48e+08

f14 Mean 2.15e+09≈ 7.57e+08≈ 6.46e+08≈ 6.90e+08

Std 8.52e+09 1.53e+09 7.15e+08 1.02e+09

w/t/l 2/8/0 1/9/0 3/7/0 –

Symbols ‘†’, ‘‡’, and ‘≈’ denote the compared algorithms are worse than, better than, or similar to Bilevel,
respectively

Table 6 Results of Bilevel and
MOFBVE with k (3, 4, and 5)
on the CEC-2013 LSGO
benchmark test functions

Function 3-MOFBVE-I 4-MOFBVE-I 5-MOFBVE-I Bilevel-I

f4 Mean 7.14e+09≈ 5.55e+09≈ 5.27e+09≈ 5.92e+09

Std 3.58e+09 2.68e+09 2.41e+09 2.14e+09

f5 Mean 2.88e+06≈ 2.96e+06≈ 3.08e+06≈ 3.15e+06

Std 5.50e+05 4.76e+05 7.52e+05 4.87e+05

f6 Mean 7.77e+04≈ 8.56e+04≈ 8.61e+04≈ 9.16e+04

Std 3.13e+04 2.10e+04 1.60e+04 1.63e+04

f7 Mean 5.00e+06≈ 3.95e+06‡ 3.54e+06‡ 4.30e+06

Std 2.75e+06 2.10e+06 9.68e+05 1.08e+06

f8 Mean 1.66e+13≈ 2.15e+13≈ 1.99e+13≈ 1.94e+13

Std 6.38e+12 1.28e+13 8.26e+12 7.84e+12

f9 Mean 2.17e+08‡ 2.04e+08‡ 2.02e+08‡ 2.69e+08

Std 3.10e+07 3.33e+07 3.13e+07 2.70e+07

f10 Mean 4.32e+03‡ 2.35e+03‡ 3.42e+03‡ 4.26e+04

Std 9.05e+03 4.76e+02 9.19e+03 1.51e+04

f11 Mean 2.75e+08≈ 2.26e+08‡ 2.20e+08‡ 3.11e+08

Std 8.47e+07 1.05e+08 6.67e+07 9.39e+07

f13 Mean 5.01e+08≈ 4.72e+08≈ 5.16e+08≈ 5.15e+08

Std 2.09e+08 2.45e+08 1.61e+08 1.86e+08

f14 Mean 2.81e+08‡ 5.42e+08≈ 5.37e+08≈ 9.67e+08

Std 2.45e+08 4.64e+08 7.43e+08 1.51e+09

w/t/l 3/7/0 4/6/0 4/6/0 –

Symbols ‘†’, ‘‡’, and ‘≈’ denote the compared algorithms are worse than, better than, or similar to Bilevel,
respectively

123

S. Mahdavi et al.

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
1e+06

1e+06

1e+08

Evaluations

Bilevel
3−MOFBVE
4−MOFBVE
5−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
10000

100000

1e+06

1e+07

Evaluations

Bilevel
3−MOFBVE
4−MOFBVE
5−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
1e+13

1e+14

1e+15

1e+16

1e+17

1e+18

1e+19

Evaluations

Bilevel
3−MOFBVE
4−MOFBVE
5−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
1000

10000

100000

1e+06

1e+07

1e+08

Evaluations

Bilevel
3−MOFBVE
4−MOFBVE
5−MOFBVE

(a) f5 (b) f6

(c) f8 (d) f10

Fig. 5 Convergence plots of f5, f6, f8, and f10 of theCEC-2013LSGObenchmark functions. The results of theBilevel framework and k-MOFBVE
algorithms were averaged over 25 runs. The vertical axis is the function value and the horizontal axis is the number of function evaluations

created an imbalance effect by multiplying some coefficients
to subcomponents of the CEC-2010 benchmark functions
(f9– f18). Also, we generated a new set of benchmark func-
tions, the modified normal CEC-2010 test functions, similar
to the modified CEC-2010 test functions while a component
is multiplied by a normal distribution coefficient to make
an imbalance effect. The normal coefficient for i th non-
separable subcomponent is calculated as following formula
proposed in Li et al. (2013):

Ci = 103N (0,1) (23)

The normal coefficients are provided in the Appendix A.
In the modified CEC-2010 test functions, the coefficients

of subcomponents are the same for all functions while the
normal coefficients can generate the different imbalance
effects of subcomponents for each function in the modi-
fied normal CEC-2010 test functions. MOFBVE algorithms

with 3, 4, and 5 levels use two or more groups of impor-
tant variables; therefore they can perform on function with
two or more imbalanced nonseparable subcomponents. So,
we selected ten functions (f9– f18) which have two or more
imbalanced nonseparable subcomponents from the modified
normal and modified CEC-2010 benchmark functions in all
our experiments.

In addition, some experiments are conducted on the
CEC-2013 LSGO benchmark functions (Li et al. 2013)
(on imbalanced nonseparable functions, i.e., f4– f11 and
f13– f14) with new transformations such as ill-conditioning,
symmetry breaking, irregularities, and having subcompo-
nents with non-uniform subcomponent sizes. The CEC-2013
LSGO benchmark functions are divided into five classes:
fully separable functions (C1: f1– f3), partially separable
functions with a separable subcomponent (C2: f4– f7), par-
tially separable functions with no separable subcomponents
(C3: f8– f11), overlapping functions (C4: f12– f14) and one

123

Multilevel framework for large-scale global optimization

Table 7 Results of Bilevel and random Bilevel on the modified CEC-
2010 test functions

Function Random Bilevel Bilevel

f9 Mean 1.31e+01‡ 1.08e+11

Std 2.40e+10 1.80e+10

f10 Mean 1.23e+07≈ 1.18e+07

Std 1.42e+06 1.30e+06

f11 Mean 1.34e+05‡ 2.57e+04

Std 9.76e+04 8.83e+03

f12 Mean 1.45e+06‡ 1.12e+06

Std 5.42e+05 5.88e+05

f13 Mean 1.40e+07≈ 1.25e+07

Std 5.54e+06 7.69e+06

f14 Mean 1.60e+12‡ 1.40e+12

Std 2.95e+11 2.23e+11

f15 Mean 1.04e+08≈ 1.02e+08

Std 1.0e+07 1.12e+07

f16 Mean 1.77e+06‡ 1.28e+06

Std 9.23e+05 2.51e+05

f17 Mean 4.64e+07≈ 2.84e+07

Std 4.35e+07 1.60e+07

f18 Mean 9.36e+08≈ 3.00e+08

Std 3.02e+09 1.91e+08

w/t/l 5/5/0 –

Symbols ‘†’, ‘‡’, and ‘≈’ denote Bilevel is worse than, better than, or
similar to random Bilevel, respectively

fully nonseparable function (C5: f15). The sizes of all non-
separable subcomponents in the modified CEC-2010 test
functions and the modified normal CEC-2010 test functions
are equal but in the CEC-2013 LSGO benchmark functions,
functions have uniform subcomponent sizes to create auto-
matically different contribution for various subcomponents.
In this study, the maximum number of evaluations was set to
3× 106, the population size was set to 50, and all algorithms
were evaluated for 25 independent runs and the results were
recorded. Also, the dimension of all of the LSGO benchmark
functions is set to 1000.

5.2 Experiment series 1: comparison among Bilevel
framework and MOFBVE frameworks with higher
number of levels, k (3, 4, and 5)

As mentioned earlier, an MOFBVE can be designed with
the number of levels more than two levels (k-MOFBVE).
In this section, we present the experimental results for three
MOFBVE frameworks with 3, 4, and 5 levels and Bilevel
framework and we have compared Bilevel against three
MOFBVE frameworks. Also, an ideal k-MOFBVE with 3,
4, and 5 levels (k-MOFBVE-I) and Bilevel-I framework are
designed which use the imbalance knowledge of a given

Table 8 Results of Bilevel and random Bilevel on the modified normal
CEC-2010 test functions

Function Random Bilevel Bilevel

f9 Mean 2.54e+10≈ 2.57e+10

Std 7.21e+09 6.68e+09

f10 Mean 2.17e+05‡ 2.05e+05

Std 2.25e+04 2.68e+04

f11 Mean 3.04e+03‡ 1.84e+03

Std 5.89e+02 5.67e+02

f12 Mean 1.32e+06‡ 9.50e+05

Std 8.40e+05 2.91e+05

f13 Mean 2.12e+07≈ 1.99e+07

Std 7.91e+06 1.04e+07

f14 Mean 3.08e+12≈ 3.36e+12

Std 6.76e+11 9.65e+11

f15 Mean 3.28e+07≈ 3.25e+07

Std 3.06e+06 4.26e+06

f16 Mean 1.22e+06‡ 2.28e+05

Std 9.23e+05 9.74e+04

f17 Mean 8.84e+07‡ 4.07e+07

Std 1.61e+08 5.70e+07

f18 Mean 2.44e+10≈ 3.24e+10

Std 7.74e+09 2.49e+10

w/t/l 5/5/0 –

Symbols ‘‡’, ‘†’, and ‘≈’ denote Bilevel is worse than, better than, or
similar to random Bilevel, respectively

problem to construct levels. A two-sided Wilcoxon statis-
tical test with a confidence interval of 95 % is performed
among the compared frameworks and theBilevel framework.
Symbols ‘†’, ‘‡’, and ‘≈’ denote the compared frameworks
are worse than, better than, or similar to Bilevel framework,
respectively. “w/t/l” in the last row in tables means that the
compared frameworkswins inw functions, ties in t functions,
and loses in l functions, compared with Bilevel framework.

5.2.1 Experiment series 1. Part A: results on the modified
CEC-2010 test functions

From Table 1 on the modified CEC-2010 test functions,
3-MOFBVE, 4-MOFBVE, and 5-MOFBVE achieve better
results than Bilevel framework on 5 (f10, f13, f15– f16 and
f18), 4 (f10– f11, and f15– f16), and 5 (f12, and f15– f18)
functions, respectively. Although Bilevel framework has bet-
ter results than 3-MOFBVE, 4-MOFBVE, and 5-MOFBVE
on 3 (f9, f12, and f14), 3 (f9, f14, and f18), 3 (f9, f11, and
f14) functions, respectively. The 3-MOFBVE, 4-MOFBVE,
and 5-MOFBVE perform similar to the Bilevel framework
on 2, 3, and 2 other functions, respectively. To gain a better
understanding of the behavior of the Bilevel framework and
k-MOFBVE algorithms, we plot the convergence graph on

123

S. Mahdavi et al.

Table 9 Results of Bilevel and Random Bilevel on the CEC-2013
LSGO benchmark test functions

Function Bilevel-I Bilevel Random Bilevel

f4 Mean 5.92e+09‡ 9.09e+09≈ 7.68e+09

Std 2.14e+09 2.60e+09 2.56e+09

f5 Mean 3.15e+06≈ 2.69e+06‡ 3.02e+06

Std 4.87e+05 5.30e+05 5.90e+05

f6 Mean 9.16e+04≈ 8.56e+04≈ 8.56e+04

Std 1.63e+04 2.41e+04 3.02e+04

f7 Mean 4.30e+06‡ 5.86e+06‡ 8.98e+06

Std 1.08e+06 2.18e+06 1.28e+07

f8 Mean 1.94e+13≈ 2.31e+13≈ 1.90e+13

Std 7.84e+12 1.13e+13 8.27e+12

f9 Mean 2.69e+08≈ 2.81e+08≈ 2.78e+08

Std 2.70e+07 3.09e+07 3.61e+07

f10 Mean 4.26e+04‡ 3.34e+04‡ 5.37e+04

Std 1.51e+04 2.17e+04 5.89e+04

f11 Mean 3.11e+08‡ 7.64e+08† 5.58e+08

Std 9.39e+07 1.04e+09 3.58e+08

f13 Mean 5.15e+08‡ 5.27e+08≈ 5.30e+08

Std 1.86e+08 1.48e+08 2.22e+08

f14 Mean 9.67e+08† 6.90e+08† 3.63e+08

Std 1.51e+09 1.02e+09 3.11e+08

w/t/l 5/4/1 3/5/2 –

Symbols ‘†’, ‘‡’, and ‘≈’ denote Bilevel is worse than, better than, or
similar to Random Bilevel, respectively

four selected problems in Fig. 3. It can be seen from Table 2
that 3-MOFBVE-I, 4-MOFBVE-I, and 5-MOFBVE-I per-
form better than Bilevel-I framework on 4 (f11– f13 and f16),
5 (f11– f13, and f16– f17), and 5 (f11– f13, and f16– f17) func-
tions, respectively. The Bilevel-I framework has the similar
performance with 3-MOFBVE-I on 6 (f9– f10, f14– f15 and
f17– f18) functions and 4-MOFBVE-I and 5-MOFBVE-I on
5 (f9– f10, f14– f15, and f18) functions. An important obser-
vation from Tables 1 and 2, is that the Bilevel framework
performs well on the modified CEC-2010 test functions but
the performance of MOFBVE is greatly enhanced when the
number of the levels increases. One possible reason for that
behavior is thatwith increase the number of levels,MOFBVE
frameworks take the advantage of more important variables
to explore promising regions. In addition, we observe that
3-MOFBVE-I, 4-MOFBVE-I, and 5-MOFBVE-I perform
better than, or similar to the Bilevel-I framework.

5.2.2 Experiment series 1. Part B: results on the modified
normal CEC-2010 test functions

On the modified normal CEC-2010 test functions, Table 3
indicates that 4-MOFBVE and 5-MOFBVE outperform
Bilevel framework on 5 (f9, f11, f13, and f15– f16) and 6

(f11- f13, and f15– f17) functions, respectively. 4-MOFBVE
cannot perform better than Bilevel framework on only one
function, f17. The Bilevel framework has the similar per-
formance with 4-MOFBVE and 5-MOFBVE on 3 and 4
other functions, respectively. 3-MOFBVEandBilevel frame-
work have the same results on all functions. To gain a better
understanding of the behavior of the Bilevel framework and
k-MOFBVE algorithms, we plot the convergence graph on
four selected problems in Fig. 4. It can be seen from Table 4
that 3-MOFBVE-I and 4-MOFBVE-I can obtain the better
results than Bilevel framework on 4 functions (f11– f12, f15,
and f17). 5-MOFBVE-I achieves better results than Bilevel-I
framework on 4 functions (f12 and f15– f17). 3-MOFBVE-
I and 4-MOFBVE-I have the similar results in comparison
withBilevel-I frameworkon6 functions (f9– f10, f13– f14, f16
and f18). 5-MOFBVE-I performs similar to the Bilevel-I
framework on 6 functions (f9– f11, f13– f14, and f18). As it
can be seen from Tables 3 and 4, the versions of k-MOFBVE
frameworks with k > 2 have better than, or similar results
to the Bilevel framework on the most functions in the mod-
ified normal CEC-2010 test functions. Once again, we can
see that with increase the number of levels the k-MOFBVE
has a more capability to improve its performance due to the
use of more important variables as mentioned before.

5.2.3 Experiment series 1. Part C: results on the CEC-2013
LSGO benchmark functions

From Table 5, it can be seen that on the CEC-2013 LSGO
benchmark functions, 3-MOFBVE, 4-MOFBVE, and 5-
MOFBVE can obtain better results than Bilevel framework
on 2 (f8 and f10), 1 (f10), and 3 (f4 and f9– f10) functions,
respectively. 3-MOFBVE, 4-MOFBVE, and 5-MOFBVE
have the same performance in comparison with Bilevel
framework on 8, 9, and 7 other functions, respectively. It
seems that Bilevel framework has the same performance
with MOFBVE with k (3, 4, and 5) on the CEC-2013
LSGO benchmark functions. One possible reason for that
behavior is that on some functions Morris method lose
its efficiency due to new transformations and having sub-
components with non-uniform subcomponent sizes in these
benchmark functions. Table 6 indicates that 3-MOFBVE-
I, 4-MOFBVE-I, and 5-MOFBVE-I outperforms Bilevel-I
framework on 3 functions (f5 and f9– f10), 4 (f7 and f9– f11),
and 4 (f7 and f9– f11) functions, respectively. 3-MOFBVE-
I, 4-MOFBVE-I, and 5-MOFBVE-I perform similar to the
Bilevel-I framework on 7, 6, and 6 other functions, respec-
tively. As it can be seen from 6, when the levels of important
variables is correctly constructed, MOFBVE frameworks
with k (3, 4, and 5) have the capability to improve the perfor-
mance of Bilevel framework. To gain a better understanding
of the behavior of the Bilevel framework and k-MOFBVE

123

Multilevel framework for large-scale global optimization

Table 10 Results of
4-MOFBVE and CC algorithms
on the modified CEC-2010 test
functions

Function DECC-DG CBCC1-DG CBCC2-DG 4-MOFBVE

f9 Mean 3.45e+11‡ 2.75e+11‡ 2.56e+11‡ 1.44e+11

Std 7.2e+10 4.42e+10 6.29e+10 2.46e+10

f10 Mean 2.80e+07‡ 2.78e+07‡ 2.80e+07‡ 1.03e+07

Std 2.18e+06 2.22e+06 1.88e+06 1.92e+06

f11 Mean 1.07e+01† 1.41e+01† 1.02e+01† 1.78e+04

Std 7.67e−01 1.74e+01 9.1e−01 1.45e+04

f12 Mean 5.12e+07‡ 5.04e+07‡ 4.63e+07‡ 1.44e+06

Std 3.19e+07 2.75e+07 2.13e+07 1.19e+06

f13 Mean 1.06e+07≈ 1.02e+07≈ 1.08e+07≈ 9.42e+06

Std 3.14e+06 4.18e+06 5.03e+06 7.04e+06

f14 Mean 6.43e+12‡ 6.35e+12‡ 6.13e+12‡ 1.68e+12

Std 1.41e+12 1.39e+12 1.42e+12 3.60e+11

f15 Mean 1.98e+08‡ 1.96e+08‡ 2.01e+08‡ 9.04e+07

Std 8.05e+06 1.16e+07 8.82e+06 1.08e+07

f16 Mean 2.15e−02† 2.11e−02† 1.83e−02† 5.77e+05

Std 2.22e−02 2.6e−02 1.83e−02 4.16e+05

f17 Mean 3.80e+09‡ 4.20e+09‡ 3.94e+09‡ 3.52e+07

Std 1.83e+09 2.00e+09 1.57e+09 5.71e+07

f18 Mean 4.32e+08‡ 5.36e+08‡ 1.51e+08≈ 5.57e+08

Std 2.49e+08 3.85e+08 9.85e+07 1.97e+09

w/t/l 7/1/2 7/1/2 6/1/3 –

Symbols ‘†’, ‘‡’, and ‘≈’ denote 4-MOFBVE are worse than, better than, or similar to the compared
algorithms, respectively

algorithms, we plot the convergence graph on four selected
problems in Fig. 5.

5.2.4 Summary and discussion

The comparison results of the three MOFBVE frameworks
with 3, 4, and 5 levels and Bilevel framework on the three
benchmark suites can be summarized and explained as fol-
lows. From the study of Tables 1, 2, 3, 4, 5, and 6, it is clear
that the versions of k-MOFBVE with k > 2 gained much
better results than Bilevel framework. The above results
demonstrate that k-MOFBVE can enhance the exploration
ability to get better solutions. It can be observed that consider-
ing more important variables in three MOFBVE frameworks
with 3, 4, and 5 levels are effective for optimizing imbal-
anced LSGO problems. As it can be seen from Tables 2, 3,
4, and 6, in comparison with Bilevel, the obtained results
of 4-MOFBVE and 5-MOFBVE algorithms are better than
3-MOFBVE algorithm although Table 4 shows the algo-
rithms have the same performance but by carefully looking
at the results indicates that 4-MOFBVE and 5-MOFBVE
algorithms achieve the mean values less than 3-MOFBVE
algorithm on 6 and 4 functions, respectively. In addition,
from Tables 2, 4, and 6 the performance of 4-MOFBVE
and 5-MOFBVE is similar on all benchmark suites. Also,

it is remarkable that k-MOFBVE can model better most
real-world problems since they involve variables with a hier-
archical levels of variant influences. Note that the main idea
of MOFBVE framework is finding the variables with a sig-
nificant effects therefore integrating the important variables
at the beginning of LSGO algorithm can improve its per-
formance. In order to show the importance of identifying
variables with more effects on the fitness values, we com-
pare Bilevel framework against random Bilevel framework.
In the random Bilevel framework, 50 variables are randomly
selected and replacedwith the level of the important variables
in Bilevel framework while other steps of random Bilevel
framework is the same with Bilevel framework. The result
derived from the random Bilevel framework and Bilevel are
summarized in Tables 7, 8, and 9. From Tables 7 and 8,
it can be seen that on the modified normal CEC-2010 test
functions and the modified CEC-2010 test functions, Bilevel
framework can obtain better results than the random Bilevel
framework on 5 out of 10 functions. From Table 9, Bilevel
andBilevel-I frameworks can perform better than the random
Bilevel framework on 3 and 5 out of 10 functions, respec-
tively; although it achieves worse results than the random
Bilevel framework on 2 and 1 out of 10 functions, respec-
tively. As we mentioned earlier, Morris method has the poor
performance on some functions due to the specific properties

123

S. Mahdavi et al.

Table 11 Results of
4-MOFBVE and CC algorithms
on the modified CEC-2010 test
functions

Function DECC-I CBCC1-I CBCC2-I 4-MOFBVE-I

f9 Mean 1.89e+11‡ 1.88e+11‡ 1.75e+11‡ 1.11e+11

Std 3.70e+10 4.35e+10 3.14e+10 2.43e+10

f10 Mean 2.39e+07‡ 2.31e+07‡ 2.39e+07‡ 1.06e+07

Std 1.64e+06 2.51e+06 2.11e+06 1.50e+06

f11 Mean 1.06e+01† 1.04e+01† 1.03e+01† 1.24e+04

Std 1.04e+00 9.68e−01 8.10e−01 1.10e+04

f12 Mean 2.91e+06‡ 2.95e+06‡ 3.76e+06‡ 6.83e+05

Std 1.04e+06 9.48e+05 3.43e+06 2.85e+05

f13 Mean 1.73e+06† 1.44e+06† 1.09e+06† 1.06e+07

Std 4.0e+05 5.42e+05 3.37e+05 3.62e+06

f14 Mean 5.44e+12‡ 6.96e+12‡ 5.99e+12‡ 1.59e+12

Std 1.10e+12 2.92e+12 2.74e+12 3.55e+11

f15 Mean 1.71e+08‡ 1.72e+08‡ 1.71e+08‡ 9.72e+07

Std 1.21e+07 1.36e+07 1.34e+07 1.06e+07

f16 Mean 8.61e−09† 7.75e−09† 1.06e−08† 4.70e+05

Std 1.92e−09 1.56e−09 3.35e−09 2.11e+05

f17 Mean 4.70e+08‡ 7.73e+08‡ 5.92e+08‡ 1.61e+07

Std 8.80e+07 3.76e+08 3.26e+08 7.06e+06

f18 Mean 3.29e+07† 3.28e+07† 2.24e+07† 1.39e+08

Std 1.57e+07 1.52e+07 1.01e+07 1.05e+08

w/t/l 6/0/4 6/0/4 6/0/4 –

Symbols ‘†’, ‘‡’, and ‘≈’ denote 4-MOFBVE are worse than, better than, or similar to the compared
algorithms, respectively

of the CEC-2013 LSGO benchmark functions. Although, we
can see that in the Bilevel-I framework when the important
variables is correctly are identified,Bilevel-I can obtain better
than or comparable results to the random Bilevel framework
on themost of the test functions. In overall, it is demonstrated
that identifying important variables has a remarkable impact
on enhancing performance of Bilevel framework.

5.3 Experiment series 2: a comparison of 4-MOFBVE
framework with the CC algorithms

In this section, we selected 4-MOFBVE among three MOF-
BVE with 3, 4, and 5 levels to compare it against several CC
algorithms. On the modified CEC-2010 test functions and
the modified normal CEC-2010 test functions, 4-MOFBVE
framework is comparedwith CC algorithmswithDGdecom-
position method. Also, the 4-MOFBVE ideal framework
(4-MOFBVE-I) is comparedwith the CC algorithmswith the
ideal decompositionmethodwhich uses the priori knowledge
about the benchmark functions to construct subcomponents.
4-MOFBVE-I uses the imbalance knowledge of a given prob-
lem to recognize the important variables. The CC algorithms
with the ideal grouping utilize the nonseparable knowledge
of a given problem such that they can construct all subcompo-
nents. Due to the specific properties of the CEC-2013 LSGO

benchmark functions, as mentioned above, DG decompo-
sition method performs poorly on these functions; thus we
compare these functions with the CC algorithms with the
ideal decomposition method. Ideal grouping method con-
structs subcomponents manually using the knowledge of
benchmark functions. CC algorithms use the round-robin
strategy (DECC) and CBCC (CBCC1 and CBCC2) (Omid-
var et al. 2011, 2014a) strategies which assign more budget
for the subcomponent with the most effect. A two-sided
Wilcoxon statistical test with a confidence interval of 95 %
is conducted among CC algorithms and 4-MOFBVE frame-
work. Symbols ‘†’, ‘‡’, and ‘≈’ denote 4-MOFBVE are
worse than, better than, or similar to the compared algo-
rithms, respectively. “w/t/l” in the last row in tables means
that Bilevel framework wins in w functions, ties in t func-
tions, and loses in l functions, compared with CC algorithms.

5.3.1 Experiment series 2. Part A: results on the modified
CEC-2010 test functions

Table 10 presents the results of 4-MOFBVE framework to
compare with the CC algorithms with along DG decomposi-
tion method with round-robin strategy (DECC-DG), CBCC1
(CBCC1-DG), and CBCC2 (CBCC2-DG) budget division
methods on the modified CEC-2010 test functions. It can be

123

Multilevel framework for large-scale global optimization

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
1e+11

1e+12

1e+13

1e+14

1e+15

1e+16
DECC−DG
CBCC1−DG
CBCC2−DG
4−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
10

100

1000

10000

100000

1e+06

1e+07
DECC−DG
CBCC1−DG
CBCC2−DG
4−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
1e+12

1e+13

1e+14

1e+15

1e+16
DECC−DG
CBCC1−DG
CBCC2−DG
4−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
0.01

1

100

10000

1e+06

1e+08

DECC−DG
CBCC1−DG
CBCC2−DG
4−MOFBVE

(a) f9 (b) f11

(c) f14 (d) f16

Fig. 6 Convergence plots of f9, f11, f14, and f16 of the modified
CEC-2010 test functions. The results were averaged over 25 runs and
4-MOFBVE framework is compared with the CC algorithms using DG

decomposition method. The vertical axis is the function value and the
horizontal axis is the number of function evaluations

seen fromTable 10 that 4-MOFBVE framework outperforms
DECC-DGandCBCC1-DGon 7 functions (f9– f10, f12, f14–
f15, and f17– f18); but DECC-DG and CBCC1-DG can
obtain better results than 4-MOFBVE framework on 2 func-
tions (f11 and f16). 4-MOFBVE framework performs better
than CBCC2-DG on 6 functions (f9– f10, f12, f14– f15, and
f17) while it cannot achieve better results than CBCC2-DG
on 3 functions (f11, f16, and f18). The 4-MOFBVE frame-
work has the same results in comparison with the compared
methods on only the function f13. In addition, the results of
the CC algorithms with the ideal grouping and 4-MOFBVE-
I are summarized in Table 11. It is obvious from Table 11
on the modified CEC-2010 test functions that 4-MOFBVE-I
performs better than DECC-I, CBCC1-I, and CBCC2-I on
6 functions (f9– f10, f12, f14– f15, and f17) while it cannot
achieve better results than the compared cc algorithms on 4
functions (f11, f13, f16, and f18).

It is remarkable that the 4-MOFBVE framework has the
worse results compared to the CC algorithms especially

on the most functions (f11 and f16) where Ackley’s func-
tions are used to form their nonseparable subcomponents on
these test benchmark function. To gain a better understand-
ing of the behavior of the 4-MOFBVE framework and CC
algorithms, we plot the convergence graph on four selected
problems (two functions per class of functions) with the DG
decomposition method in Fig. 6. The 4-MOFBVE-I frame-
work uses only three levels of important subcomponents for
more optimization for several iterations so the 4-MOFBVE-
I framework is approximately an non-decomposition-based
method, i.e., it tackles LSGO problems approximately as a
whole. The CC algorithms take the advantage of the divide-
and-conquer strategy to divide LSGO problem into several
low-dimensional subcomponents. The reason that the perfor-
mance of the 4-MOFBVE framework is either worse than or
the same as compared CC methods on some functions might
be due to the type of its strategy (non-decomposition) to han-
dle LSGO problems. Furthermore, the comparison between
the ideal CC algorithms and the 4-MOFBVE-I framework

123

S. Mahdavi et al.

Table 12 Results of
4-MOFBVE and CC algorithms
on the modified normal
CEC-2010 test functions

Function DECC-DG CBCC1-DG CBCC2-DG 4-MOFBVE

f9 Mean 1.1e+11‡ 1.22e+11‡ 1.31e+11‡ 3.31e+10

Std 6.44e+10 5.03e+10 5.18e+10 8.20e+09

f10 Mean 3.04e+05‡ 3.03e+05‡ 3.00e+05‡ 1.96e+05

Std 1.54e+04 1.78e+04 1.93e+04 2.37e+04

f11 Mean 1.05e+01† 1.03e+01† 1.10e+01† 1.36e+03

Std 6.51e−01 6.92e−01 9.07e−01 5.88e+02

f12 Mean 1.60e+07‡ 1.74e+07‡ 1.44e+07‡ 1.20e+06

Std 5.01e+06 4.23e+06 5.86e+06 6.69e+05

f13 Mean 1.61e+07≈ 1.61e+07≈ 1.42e+07≈ 1.25e+07

Std 8.36e+06 9.02e+06 7.19e+06 8.05e+06

f14 Mean 2.27e+13‡ 2.45e+13‡ 2.14e+13‡ 3.55e+12

Std 8.58e+12 6.46e+12 7.76e+12 7.82e+11

f15 Mean 5.90e+07‡ 5.97e+07‡ 5.91e+07‡ 2.86e+07

Std 4.22e+06 3.88e+06 3.67e+06 4.43e+06

f16 Mean 1.13e+00† 6.04e−01† 1.64e+01† 1.26e+05

Std 4.19e−01 1.30e−01 7.79e+01 8.87e+04

f17 Mean 1.54e+10‡ 2.34e+10‡ 1.66e+10‡ 8.14e+07

Std 7.32e+09 7.40e+09 6.89e+09 9.97e+07

f18 Mean 7.84e+10‡ 9.64e+10‡ 1.06e+11‡ 1.89e+10

Std 1.05e+11 1.70e+11 1.93e+11 9.92e+09

w/t/l 7/1/2 7/1/2 7/1/2 –

Symbols ‘†’, ‘‡’, and ‘≈’ denote 4-MOFBVE are worse than, better than, or similar to the compared
algorithms, respectively

is not totally fair comparison because the 4-MOFBVE-I
framework takes only the imbalance knowledge about three
important subcomponents while the ideal CC algorithms
takes the nonseparable knowledge of all variables.

5.3.2 Experiment series 2. Part B: results on the modified
normal CEC-2010 test functions

Table 12 shows the results of 4-MOFBVE framework to
compare with CC algorithms with along DG decomposi-
tion method with the round-robin (DECC-DG), CBCC1
(CBCC1-DG), and CBCC2 (CBCC2-DG) budget division
methods on the modified normal CEC-2010 test functions. It
is obvious from Table 12 that 4-MOFBVE framework out-
performs DECC-DG, CBCC1-DG, and CBCC2-DG on 7
(f9– f10, f12, f14– f15, and f17– f18), 7 (f9– f10, f12, f14– f15,
and f17– f18), and 7 (f9– f10, f12, f14– f15, and f17– f18) func-
tions, respectively. However, 4-MOFBVE framework cannot
outperform DECC-DG, CBCC1-DG, and CBCC2-DG on
2 (f11 and f16). The 4-MOFBVE framework achieves the
same results in comparison with DECC-DG and CBCC1-
DG on the function f13 and CBCC1-DG on the function
f13. Also, the results of the CC algorithms with the ideal
grouping and 4-MOFBVE-I are summarized in Table 13. It
is obvious from Table 13 that 4-MOFBVE-I performs bet-

ter than DECC-I on 6 functions (f9– f10, f12, f14– f15, and
f17) while it cannot achieve better results than DECC-I on 4
functions (f11, f13, f16, and f18). 4-MOFBVE-I outperforms
CBCC1-I and CBCC2-I on 5 functions (f9– f10, f14– f15, and
f17); but CBCC1-I and CBCC2-I obtain better results than
4-MOFBVE-I on 5 functions (f11– f13, f16, and f18). By
comparing the performance of the 4-MOFBVE-I framework
and the compared CC algorithms with the ideal decompo-
sition method, it can be seen that both algorithms perform
similarly on the modified normal CEC-2010 test func-
tions. As mentioned above, one possible reason for the
poor performance of the 4-MOFBVE-I framework on some
functions might be due to the type of its strategy (non-
decomposition) to handle LSGO problems. Furthermore, the
comparison between the ideal CC algorithms and the 4-
MOFBVE-I framework is not totally fair comparison and
the 4-MOFBVE-I uses the low level of the prior knowledge
than the idealCCalgorithms asmentioned above. It is notable
that, like themodified CEC-2010 test functions, 4-MOFBVE
framework also has same behavior on f11 and f16, Ackley’s
functions are used to form their nonseparable subcompo-
nents, and 4-MOFBVE framework was trapped in a local
optimum. To gain a better understanding of the behavior of
the 4-MOFBVE framework and CC algorithms, we plot the
convergence graph on four selected problems (two functions

123

Multilevel framework for large-scale global optimization

Table 13 Results of
4-MOFBVE and CC algorithms
on the modified normal
CEC-2010 test functions

Function DECC-I CBCC1-I CBCC2-I 4-MOFBVE-I

f9 Mean 8.15e+10‡ 3.92e+10‡ 3.96e+10‡ 2.50e+10

Std 2.46e+10 1.27e+10 1.24e+10 6.91e+09

f10 Mean 3.12e+05‡ 2.83e+05‡ 2.83e+05‡ 2.12e+05

Std 1.94e+04 1.79e+04 1.55e+04 2.60e+04

f11 Mean 1.03e+01† 1.03e+01† 1.06e+01† 9.71e+02

Std 1.02e+00 1.03e+00 1.08e+00 1.28e+02

f12 Mean 1.83e+07‡ 3.81e+05† 3.84e+05† 7.19e+05

Std 6.04e+06 9.10e+04 9.03e+04 3.14e+05

f13 Mean 8.94e+06† 2.14e+06† 5.62e+05† 2.10e+07

Std 4.90e+06 1.08e+06 4.85e+05 7.91e+06

f14 Mean 9.43e+13‡ 2.62e+13‡ 2.18e+13‡ 3.49e+12

Std 2.92e+13 9.01e+12 4.93e+12 9.99e+11

f15 Mean 6.36e+07‡ 5.61e+07‡ 5.55e+07‡ 2.73e+07

Std 3.34e+06 3.76e+06 4.50e+06 3.86e+06

f16 Mean 1.48e−08† 1.12e−08† 1.30e−08† 1.12e+05

Std 2.52e−09 1.07e−09 5.26e−09 8.30e+04

f17 Mean 1.45e+11‡ 6.50e+09‡ 3.97e+09‡ 1.66e+07

Std 3.36e+10 1.94e+09 1.96e+09 1.22e+07

f18 Mean 1.45e+10† 9.87e+09† 9.23e+09† 2.54e+10

Std 5.37e+09 4.17e+09 4.88e+09 9.29e+09

w/t/l 6/0/4 5/0/5 5/0/5 –

Symbols ‘‡’, ‘†’, and ‘≈’ denote 4-MOFBVE are worse than, better than, or similar to the compared
algorithms, respectively

per class of functions) with the DG decomposition method
in Fig. 7.

5.3.3 Experiment series 2. Part C: results on the CEC-2013
LSGO benchmark functions

The results of 4-MOFBVE framework to compare with
CC algorithms with along ideal decomposition method
with round-robin (CC-ideal), CBCC1 (CBCC1-ideal), and
CBCC2 (CBCC2-ideal) budget division methods on the
CEC-2013 LSGO benchmark functions are summarized in
Table 14. It can be seen from Table 14 that 4-MOFBVE
framework outperforms CC-ideal, CBCC1-ideal, and
CBCC2-ideal on 8 functions (f4– f5, f7– f9, and f11– f13).
However, the compared CC methods with ideal decompo-
sition method can obtain better results than 4-MOFBVE
framework on 2 functions (f6 and f10). Aswementioned ear-
lier the 4-MOFBVE framework method becomes ineffective
on most functions having Ackley nonseparable subcompo-
nents such as f6 and f10 in these test functions. Although, CC
algorithms with along ideal decomposition method used the
prior knowledge of the benchmark functions to decompose
functions, 4-MOFBVE framework still outperforms them on
most of functions. CC methods lose its effectiveness on the

CEC-2013 LSGO benchmark functions due to the specific
properties of the CEC-2013 LSGO benchmark functions,
as mentioned above. Also, the convergence plots for four
selected functions on the CEC-2013 LSGO benchmark func-
tions (two functions from two classes of functions: functions
with seven imbalanced subcomponents and functions with
20 imbalanced subcomponents) are shown in Fig. 8.

5.3.4 Summary and discussion

The comparison results of 4-MOFBVE framework and CC
algorithms on the three benchmark suites can be summa-
rized and explained as follows. From the study of Tables
7, 9, and 11, it can be seen that 4-MOFBVE framework
is significantly better than CC algorithms with the various
budget division methods although the performance of the
4-MOFBVE framework decreases on themost functions hav-
ing Ackley nonseparable subcomponents. In 4-MOFBVE
framework, three levels of important variables are optimized
before an LSGO algorithm to enhance the ability of an LSGO
algorithm to handle the imbalancedLSGOproblems.Besides
the above statistical tests, in order to deeply analyze the per-
formance differences of 4-MOFBVE framework with regard
to DECC, CCBC1, and CCBC2 algorithms, we also conduct

123

S. Mahdavi et al.

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
1e+10

1e+11

1e+12

1e+13

1e+14

1e+15
DECC−DG
CBCC1−DG
CBCC2−DG
4−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
10

100

1000

10000

100000
DECC−DG
CBCC1−DG
CBCC2−DG
4−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
1e+12

1e+13

1e+14

1e+15

1e+16

1e+17
DECC−DG
CBCC1−DG
CBCC2−DG
4−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
0.01

1

100

10000

1e+06

1e+08
DECC−DG
CBCC1−DG
CBCC2−DG
4−MOFBVE

(a) f9 (b) f11

(c) f14 (d) f16

Fig. 7 Convergence plots of f9, f11, f14, and f16 of the modified nor-
mal CEC-2010 test functions. The results were averaged over 25 runs
and 4-MOFBVE framework is compared with the CC algorithms using

DG decomposition method. The vertical axis is the function value and
the horizontal axis is the number of function evaluations

a pairwise signed-rank Wilcoxon test (Wilcoxon 1945). The
pairwise signed-rank Wilcoxon test are used to compare the
performance of two algorithms on a common set of prob-
lems (Derrac et al. 2011). Here, on all benchmark functions,
the total number of functions is 30. Tables 15, 16, and 17
show the ranks and p-values of Wilcoxon test between 4-
MOFBVE framework and CC algorithms. A plus sign ‘+’
indicates that 4-MOFBVE framework statistically performs
better than other algorithms at significance level 5 %. We
observe that the rank values corresponding to 4-MOFBVE
framework are always greater than other algorithms.

5.4 Experiment series 3: comparison of MOFBVE
algorithms with SaNSDE algorithm

In this section, we compare SaNSDE against 3-MOFBVE,
4-MOFBVE, 5-MOFBVE, and the Bilevel framework.
SaNSDE is applied as the subcomponent optimization algo-

rithm in the MOFBVE algorithms. This comparison aim is
investigatingwhether allMOFBVE frameworks performbet-
ter than the internal parent optimizer. A two-sided Wilcoxon
statistical test with a confidence interval of 95 % is per-
formed among the compared frameworks and SaNSDE.
Symbols ‘†’, ‘‡’, and ‘≈’ denote the compared frame-
works are worse than, better than, or similar to SaNSDE,
respectively. “w/t/l” in the last row in tables means that the
compared frameworks wins in w functions, ties in t func-
tions, and loses in l functions, compared with SaNSDE.
The result derived from the compared frameworks and
SaNSDE are summarized in Tables 18, 19, and 20. It can
be seen from Table 18 that on the modified CEC-2010 test
functions, 3-MOFBVE, 4-MOFBVE, 5-MOFBVE, and the
Bilevel framework can obtain better results than SaNSDE
on 6 (f9, f11– f12, f14 and f16– f17), 5 (f10– f11 and f15–
f17), 7 (f10– f13 and f15– f17), and 7 (f10– f12 and f15– f18)
functions, respectively. 4-MOFBVE achieves worse result

123

Multilevel framework for large-scale global optimization

Table 14 Results of
4-MOFBVE and CC algorithms
on the CEC-2013 LSGO
benchmark test functions

Function CC-ideal CBCC1-ideal CBCC2-ideal 4-MOFBVE

f4 Mean 4.97e+10‡ 2.60e+10‡ 2.76e+10‡ 9.13e+09

Std 1.97e+10 1.31e+10 1.43e+10 3.079e+09

f5 Mean 4.96e+06‡ 4.42e+06‡ 4.40e+06‡ 2.80e+06

Std 3.63e+05 4.56e+05 4.24e+05 3.61e+05

f6 Mean 1.2e+04† 4.07e+03† 1.44e+04† 9.11e+04

Std 2.51e+04 1.41e+04 3.13e+04 2.15e+04

f7 Mean 6.33e+07‡ 4.58e+07‡ 5.46e+07‡ 9.35e+06

Std 2.36e+07 2.37e+07 2.49e+07 1.26e+07

f8 Mean 4.86e+15‡ 2.87e+15‡ 2.48e+15‡ 2.54e+13

Std 1.85e+15 1.15e+15 9.83e+14 1.53e+13

f9 Mean 4.97e+08‡ 4.30e+08‡ 4.28e+08‡ 2.62e+08

Std 3.53e+07 2.28e+07 4.06e+07 2.62e+07

f10 Mean 1.64e+01† 1.44e+01† 8.88e+00† 2.55e+03

Std 1.96e+01 1.84e+01 1.05e+01 3.31e+02

f11 Mean 3.27e+09‡ 2.76e+09‡ 2.25e+09‡ 4.48e+08

Std 5.11e+09 2.56e+09 1.97e+09 3.97e+08

f13 Mean 8.96e+09‡ 8.85e+09‡ 8.46e+09‡ 5.68e+08

Std 2.3e+09 3.06e+09 2.99e+09 2.19e+08

f14 Mean 8.77e+10‡ 7.25e+10‡ 7.35e+10‡ 7.57e+08

Std 2.53e+10 2.78e+10 3.16e+10 1.53e+09

w/t/l 8/0/2 8/0/2 8/0/2 –

Symbols ‘†’, ‘‡’, and ‘≈’ denote 4-MOFBVE are worse than, better than, or similar to the compared
algorithms, respectively

than SaNSDE on only one function f9. 3-MOFBVE, 4-
MOFBVE, 5-MOFBVE, and the Bilevel framework have
the similar performance in comparison with SaNSDE on 4,
5, 2, and 3 other functions. On the modified normal CEC-
2010 test functions, Table 19 indicates that 3-MOFBVE,
4-MOFBVE, 5-MOFBVE, and the Bilevel framework out-
perform SaNSDE on 3 (f11– f12 and f16), 3 (f11, f16, and
f18), 4 (f11, f15– f16 and f18), and 6 (f11– f13 and f16– f18)
functions, respectively. 3-MOFBVE, 4-MOFBVE, and 5-
MOFBVE achieve worse results than SaNSDE on 1 (f9),
3 (f9 and f13– f14), and 1 (f14) functions, respectively.
3-MOFBVE, 4-MOFBVE, 5-MOFBVE, and the Bilevel
framework similar results in comparison with SaNSDE on 7
(f9– f10, f13– f15, and f17– f18), 6 (f10, f12– f15, and f17), 3
(f10, f12, and f17), and 3 (f9– f10, and f15) functions, respec-
tively.

It is obvious from Table 20 on the CEC-2013 LSGO
benchmark functions that 3-MOFBVE, 4-MOFBVE, 5-
MOFBVE, and the Bilevel framework perform better than
SaNSDE on 1 (f5), 2 (f5 and f10), 1 (f10), and 2 (f9–
f10) functions, respectively. 3-MOFBVE, 4-MOFBVE, 5-
MOFBVE, and the Bilevel framework achieve the same

results in comparison with SaNSDE on 9, 8, 9, and 8 other
functions.Aswementioned earlierMorrismethodperformed
poorly on some functions in the CEC-2013 LSGO bench-
mark suit therefore SaNSDE is compared with the ideal
k-MOFBVE with 3, 4, and 5 levels and Bilevel-I. From
Table 21, we can observe that 3-MOFBVE-I, 4-MOFBVE-I,
5-MOFBVE-I, and the Bilevel-I framework can obtain bet-
ter results than SaNSDE on 5 (f4, f7, and f9– f11), 5 (f4, f7,
and f9– f11), 4 (f7, and f9– f11), and 2 (f4 and f7) func-
tions, respectively. 3-MOFBVE, 4-MOFBVE, 5-MOFBVE,
and the Bilevel framework achieve the same results in com-
parison with SaNSDE on 5, 5, 4, and 8 other functions. From
the study of Tables 18, 19, 20, and 21, we can conclude that
the performance of k-MOFBVE is either significantly bet-
ter than or comparable to SaNSDE as the parent algorithm.
Important observations form results is that the performance
of k-MOFBVE is significantly better than SaNSDEwhen the
number of the levels in the k-MOFBVE increases. The main
reasonwhy k-MOFBVEperforms better thanSaNSDE is that
it reduce the search space of an imbalanced LSGO problem
to a small search space with the most important variables to
find effective direction toward promising regions.

123

S. Mahdavi et al.

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
1e+06

1e+07

1e+08
DECC−DG
CBCC1−DG
CBCC2−DG
4−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
1000

10000

100000

1e+06

1e+07
DECC−DG
CBCC1−DG
CBCC2−DG
4−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
1e+13

1e+14

1e+15

1e+16

1e+17

1e+18

1e+19
DECC−DG
CBCC1−DG
CBCC2−DG
4−MOFBVE

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
1

100

10000

1e+06

1e+08
DECC−DG
CBCC1−DG
CBCC2−DG
4−MOFBVE

(a) f5 (b) f6

(c) f8 (d) f10

Fig. 8 Convergence plots of f5, f6, f8, and f10 of the CEC-2013
LSGO benchmark functions. The results were averaged over 25 runs
and 4-MOFBVE framework is compared with the CC algorithms using

the ideal decomposition method. The vertical axis is the function value
and the horizontal axis is the number of function evaluations

Table 15 Wilcoxon test between 4-MOFBVE and DECC

4-MOFBVE.Ranks 425

DECC-DG.Ranks 40

p value 8e−05

Results at the 5 % significance level +

Table 16 Wilcoxon test between 4-MOFBVE and CCBC1

4-MOFBVE.Ranks 429

CCBC1-DG.Ranks 36

p value 0

Results at the 5 % significance level +

6 Conclusions and future directions

In this paper, we proposed a new optimization framework
to solve LSGO problems more efficiently. MOFBVE has a

Table 17 Wilcoxon test between 4-MOFBVE and CCBC2

4-MOFBVE.Ranks 424

CCBC2-DG.Ranks 41

p value 8e−05

Results at the 5 % significance level +

simple concept, a hierarchical model composed of the sev-
eral levels with the specific search space of the optimization
problem. In MOFBVE, the search space associated with an
LSGO problem is transformed to a low-dimension search
space including variables with the most influence on the fit-
ness value to obtain fitter initial sub-solutions for the last level
with the original search space. Themainmotivation ofMOF-
BVE relies on the complexity reduction of the search space
in the LSGO problems. The sensitivity analysis methods are
used to detect the influence of the variables on the objec-
tive function. In MOFBVE, when the number of the levels
increases, the performance of MOFBVE is enhanced sig-

123

Multilevel framework for large-scale global optimization

Table 18 Results of SaNSDE,
Bilevel, and MOFBVE with k
(3, 4, and 5) on the modified
CEC-2010 test functions

Function Bilevel 3-MOFBVE 4-MOFBVE 5-MOFBVE SaNSDE

f9 Mean 1.08e+11‡ 1.42e+11≈ 1.44e+11† 1.36e+11≈ 1.24e+11

Std 1.80e+10 2.68e+10 2.46e+10 2.62e+10 3.12e+10

f10 Mean 1.18e+07≈ 1.04e+07‡ 1.03e+07‡ 1.11e+07‡ 1.19e+07

Std 1.30e+06 2.02e+06 1.92e+06 1.33e+06 1.07e+06

f11 Mean 2.57e+04‡ 2.66e+04‡ 1.78e+04‡ 2.68e+04‡ 1.77e+05

Std 8.83e+03 2.32e+04 1.45e+04 5.20e+04 8.90e+04

f12 Mean 1.12e+06‡ 1.36e+06≈ 1.44e+06‡ 5.26e+05‡ 1.55e+06

Std 5.88e+05 5.38e+05 1.19e+06 1.72e+05 5.89e+05

f13 Mean 1.25e+07≈ 1.11e+07≈ 9.42e+06‡ 1.20e+07≈ 1.16e+07

Std 7.69e+06 5.91e+06 7.04e+06 8.24e+06 4.25e+06

f14 Mean 1.40e+12‡ 1.64e+12≈ 1.68e+12≈ 1.63e+12≈ 1.54e+12

Std 2.23e+11 3.24e+11 3.60e+11 2.86e+11 2.70e+11

f15 Mean 1.02e+08≈ 9.67e+07‡ 9.04e+07‡ 9.55e+07‡ 1.04e+08

Std 1.12e+07 9.46e+06 1.08e+07 1.32e+07 1.07e+07

f16 Mean 1.28e+06‡ 9.54e+05‡ 5.77e+05‡ 6.55e+05‡ 2.23e+06

Std 2.51e+05 4.71e+05 4.16e+05 5.26e+05 9.23e+05

f17 Mean 2.84e+07‡ 3.68e+07‡ 3.52e+07‡ 2.01e+07‡ 4.15e+07

Std 1.60e+07 4.83e+07 5.71e+07 1.34e+07 3.96e+07

f18 Mean 3.00e+08≈ 2.36e+08≈ 5.57e+08† 1.49e+08‡ 2.23e+08

Std 1.91e+08 1.87e+08 1.97e+09 6.36e+07 9.69e+07

w/t/l 6/4/0 5/5/0 7/2/1 7/3/0 –

Symbols ‘†’, ‘‡’, and ‘≈’ denote the compared algorithms are worse than, better than, or similar to
SaNSDE, respectively

Table 19 Results of SaNSDE,
Bilevel, and MOFBVE with k
(3, 4, and 5) on the modified
normal CEC-2010 test functions

Function Bilevel 3-MOFBVE 4-MOFBVE 5-MOFBVE SaNSDE

f9 Mean 2.57e+10≈ 3.18e+10† 3.31e+10† 2.85e+10≈ 2.43e+10

Std 6.68e+09 8.86e+09 8.20e+09 8.12e+09 4.89e+09

f10 Mean 2.05e+05≈ 2.06e+05≈ 1.96e+05≈ 1.97e+05≈ 1.98e+05

Std 2.68e+04 2.43e+04 2.37e+04 3.09e+04 2.68e+04

f11 Mean 1.84e+03‡ 1.54e+03‡ 1.36e+03‡ 1.06e+03‡ 3.03e+03

Std 5.67e+02 7.25e+02 5.88e+02 4.48e+02 5.56e+02

f12 Mean 9.50e+05‡ 1.30e+06≈ 1.20e+06≈ 6.89e+05‡ 1.71e+06

Std 2.91e+05 9.91e+05 6.69e+05 4.36e+05 2.05e+06

f13 Mean 1.99e+07≈ 1.45e+07≈ 1.25e+07† 1.12e+07‡ 1.92e+07

Std 1.04e+07 1.10e+07 8.05e+06 9.12e+06 8.25e+06

f14 Mean 3.36e+12≈ 3.46e+12≈ 3.55e+12† 3.56e+12† 3.11e+12

Std 9.65e+11 7.97e+11 7.82e+11 8.13e+11 1.01e+12

f15 Mean 3.25e+07≈ 3.06e+07≈ 2.86e+07‡ 3.02e+07≈ 3.15e+07

Std 4.26e+06 3.98e+06 4.43e+06 2.78e+06 3.21e+06

f16 Mean 2.28e+05‡ 1.95e+05‡ 1.26e+05‡ 1.76e+05‡ 1.56e+06

Std 9.74e+04 1.94e+05 8.87e+04 3.30e+05 1.01e+06

f17 Mean 4.07e+07≈ 8.61e+07≈ 8.14e+07≈ 1.60e+07‡ 5.96e+07

Std 5.70e+07 1.26e+08 9.97e+07 1.60e+07 9.93e+07

f18 Mean 3.24e+10≈ 2.40e+10† 2.34e+10† 2.50e+10† 5.96e+07

Std 2.49e+10 1.62e+10 9.92e+09 1.10e+10 2.71e+10

w/t/l 3/7/0 2/6/2 3/3/4 5/3/2 –

Symbols ‘†’, ‘‡’, and ‘≈’ denote the compared algorithms are worse than, better than, or similar to
SaNSDE, respectively

123

S. Mahdavi et al.

Table 20 Results of SaNSDE,
Bilevel, and MOFBVE with k
(3, 4, and 5) on the CEC-2013
LSGO benchmark test functions

Function Bilevel 3-MOFBVE 4-MOFBVE 5-MOFBVE SaNSDE

f4 Mean 9.09e+09≈ 9.92e+09≈ 9.13e+09≈ 7.29e+09≈ 8.23e+09

Std 2.60e+09 5.01e+09 3.08e+09 3.63e+09 3.09e+09

f5 Mean 2.69e+06‡ 2.77e+06‡ 2.80e+06≈ 3.01e+06≈ 3.01e+06

Std 5.30e+05 4.19e+05 3.61e+05 5.43e+05 4.25e+05

f6 Mean 8.56e+04≈ 9.33e+04≈ 9.25e+04≈ 8.81e+04≈ 9.31e+04

Std 2.41e+04 2.91e+04 2.15e+04 2.59e+04 1.49e+04

f7 Mean 5.85e+06≈ 5.82e+06≈ 9.35e+06≈ 6.53e+06≈ 6.12e+06

Std 2.18e+06 2.21e+06 1.26e+07 2.80e+06 2.65e+06

f8 Mean 2.31e+13≈ 1.81e+13≈ 2.54e+13≈ 2.88e+13≈ 2.23e+13

Std 8.86e+12 9.05e+12 1.03e+13 1.15e+13 1.50e+13

f9 Mean 2.81e+08≈ 2.65e+08≈ 2.62e+08≈ 1.94e+08‡ 2.72e+08

Std 3.09e+07 3.16e+07 2.62e+07 3.30e+07 2.49e+07

f10 Mean 3.34e+04≈ 2.09e+04‡ 2.55e+03‡ 1.89e+03‡ 4.42e+04

Std 2.17e+04 2.22e+04 3.31e+02 1.15e+03 1.25e+04

f11 Mean 7.64e+08≈ 4.55e+08≈ 4.48e+08≈ 3.83e+09≈ 3.90e+08

Std 1.04e+09 3.66e+08 3.97e+08 1.34e+10 2.01e+08

f13 Mean 5.27e+08≈ 5.31e+08≈ 5.68e+08≈ 6.56e+08≈ 5.19e+08

Std 1.48e+08 1.95e+08 2.19e+08 2.80e+08 2.83e+08

f14 Mean 6.90e+08‡ 2.15e+09≈ 7.57e+08≈ 6.46e+08≈ 4.34e+08

Std 1.02e+09 8.52e+09 1.53e+09 7.15e+08 4.63e+08

w/t/l 1/8/1 2/8/0 1/9/0 2/8/0 –

Symbols ‘†’, ‘‡’, and ‘≈’ denote the compared algorithms are worse than, better than, or similar to
SaNSDE, respectively

Table 21 Results of SaNSDE,
Bilevel-I, and MOFBVE-I with
k (3, 4, and 5) on the CEC-2013
LSGO benchmark test functions

Function Bilevel-I 3-MOFBVE-I 4-MOFBVE-I 5-MOFBVE-I SaNSDE

f4 Mean 7.14e+09‡ 5.55e+09‡ 5.27e+09≈ 5.92e+09‡ 8.23e+09

Std 3.58e+09 2.68e+09 2.41e+09 2.14e+09 3.09e+09

f5 Mean 2.88e+06≈ 2.96e+06≈ 3.08e+06≈ 3.15e+06≈ 3.01e+06

Std 5.50e+05 4.76e+05 7.52e+05 4.87e+05 4.25e+05

f6 Mean 7.77e+04≈ 8.56e+04≈ 8.61e+04≈ 9.16e+04≈ 9.31e+04

Std 3.13e+04 2.10e+04 1.60e+04 1.63e+04 1.49e+04

f7 Mean 5.00e+06‡ 3.95e+06‡ 3.54e+06‡ 4.30e+06‡ 6.12e+06

Std 2.75e+06 2.10e+06 9.68e+05 1.08e+06 2.65e+06

f8 Mean 1.66e+13≈ 2.15e+13≈ 1.99e+13≈ 1.94e+13≈ 2.23e+13

Std 6.38e+12 1.28e+13 8.26e+12 7.84e+12 1.50e+13

f9 Mean 2.17e+08‡ 2.04e+08‡ 2.02e+08‡ 2.69e+08≈ 2.72e+08

Std 3.10e+07 3.33e+07 3.13e+07 2.70e+07 2.49e+07

f10 Mean 4.32e+03‡ 2.35e+03‡ 3.42e+03‡ 4.26e+04≈ 4.42e+04

Std 9.05e+03 4.76e+02 9.19e+03 1.51e+04 1.25e+04

f11 Mean 2.75e+08‡ 2.26e+08‡ 2.20e+08‡ 3.11e+08≈ 3.90e+08

Std 8.47e+07 1.05e+08 6.67e+07 9.39e+07 2.01e+08

f13 Mean 5.01e+08≈ 4.72e+08≈ 5.16e+08≈ 5.15e+08≈ 5.19e+08

Std 2.09e+08 2.45e+08 1.61e+08 1.86e+08 2.83e+08

f14 Mean 2.81e+08≈ 5.42e+08≈ 5.37e+08≈ 9.67e+08≈ 4.34e+08

Std 2.45e+08 4.64e+08 7.43e+08 1.51e+09 4.63e+08

w/t/l 5/5/0 5/5/0 4/6/0 2/8/0 –

Symbols ‘†’, ‘‡’, and ‘≈’ denote the compared algorithms are worse than, better than, or similar to
SaNSDE, respectively

123

Multilevel framework for large-scale global optimization

nificantly. The performance of MOFBVE was evaluated on
two different modified CEC-2010 and the CEC-2013 LSGO
benchmark functions. The experimental results confirmed
that MOFBVE with the specific feature, the transforma-
tion of the search space by reducing all variables into the
important variables, has potential to play a positive role in
solving LSGO problems. Furthermore, MOFBVE was com-
pared with the standard CC algorithms, contribution-based
CC algorithms, and SaNSDE which is the subcomponent
optimizer in the CC algorithms and MOFBVE. The perfor-
mance ofMOFBVE is superior to or at least comparable with
the other competitors. However, Omidvar et al. tried to detect
the effect of the constructed subcomponents by decomposi-
tion method to improve CC algorithms in Omidvar et al.
(2011, 2014a), the effect of each variable in an LSGO prob-
lem and their impact on LSGO algorithms have not directly
considered. We made a basic attempt to show that detecting
variables’ effect is an important feature of LSGO problems
to accelerate LSGO algorithms. This study is a starting idea
in this direction to confirm the potentials and motivate other
researchers in the LSGOfields to participate with the concept
of variables’ effect on the objective function. In future, we

are planning to design hybrid strategies for MOFBVE with
the CC algorithms to benefit from two features: interaction
and various effects of variables. Furthermore, we will inves-
tigate the sensitivity of MOFBVE to the different levels of
imbalance. Finally, we are interested in developing an itera-
tiveMOFBVE such that multilevel framework can use levels
with most important variables not only at the beginning steps
of optimization algorithm but also at other steps.

Acknowledgments The authors would like to thank anonymous
reviewers for their constructive comments.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Appendix A

The the normal coefficient
Tables 22, 23, and 24 present the normal coefficient corre-
sponding to nonseparable subcomponents in the modified
normal CEC-2010 test functions.

Table 22 The normal
coefficients for single-group
m-nonseparable functions
(f4– f8)

Function f4 f5 f6 f7 f8

Group1 7.78e+04 1.42e+02 3.86e+02 2.93e+01 1.27e+03

Table 23 The normal
coefficients for n

2m -group
m-nonseparable functions
(f9– f13)

Function f9 f10 f11 f12 f13

Group1 6.05e+01 3.96e+00 6.11e+01 1.89e+00 3.12e−01

Group2 2.77e−07 2.73e−05 1.38e+03 1.55e+05 2.21e−01

Group3 1.00e−04 6.70e−03 2.55e−01 1.49e−02 4.21e+01

Group4 4.75e−05 1.66e−02 9.62e+00 6.15e−03 1.47e+01

Group5 1.61e+01 1.60e+01 1.93e−01 5.63e−06 1.79e+02

Group6 2.57e+04 6.71e+02 4.88e+00 5.39e+02 2.16e+05

Group7 1.05e−01 7.97e+00 2.09e+01 3.99e+02 4.67e+03

Group8 2.74e+02 7.60e−02 1.41e−02 5.76e−01 1.41e−04

Group9 4.33e+01 2.80e+02 6.68e+00 4.96e+02 1.03e−07

Group10 7.00e−04 2.49e+02 6.36e+01 3.56e+00 5.08e+02

Table 24 The normal
coefficients for n

m -group
m-nonseparable functions
(f14– f18)

Function f14 f15 f16 f17 f18

Group1 3.11e−06 7.13e+02 2.83e+02 1.14e−02 2.99e−01

Group2 1.59e+00 5.06e−02 2.95e+01 7.11e+07 3.61e−02

Group3 1.28e+00 8.85e+01 1.98e+02 4.50e+01 3.24e+02

Group4 3.48e+07 8.31e−02 2.16e+02 7.63e+00 4.12e+07

Group5 6.20e−01 1.31e+02 3.62e−05 4.64e−03 1.07e−04

Group6 4.00e+01 1.77e+04 4.18e+01 6.39e−04 2.43e+00

Group7 5.10e+00 1.54e−05 5.31e−01 4.95e−06 4.71e−05

Group8 5.46e+00 1.22e+03 5.24e−03 5.39e−02 8.08e+03

Group9 1.62e+00 2.37e+04 8.30e−03 6.93e−04 1.70e+04

123

S. Mahdavi et al.

Table 24 continued
Function f14 f15 f16 f17 f18

Group10 1.49e−02 1.39e+00 6.99e+03 8.78e+01 1.03e−05

Group11 2.15e−04 1.73e+05 3.72e−03 1.11e−01 6.78e+05

Group12 8.90e+00 2.93e+00 1.95e−04 2.03e+05 5.57e−04

Group13 9.36e−05 1.94e−04 4.41e+00 3.40e+04 4.79e+00

Group14 8.01e−04 2.63e−07 1.08e+06 3.10e+00 1.98e+03

Group15 9.85e+03 9.99e−02 1.19e+00 1.42e−01 2.76e+00

Group16 5.54e−02 1.38e+02 8.41e+00 2.86e+03 7.71e+06

Group17 3.79e−01 8.96e+00 1.53e−03 3.63e−04 1.81e+08

Group18 5.01e+02 1.74e+01 1.05e+05 1.05e+02 2.60e+00

Group19 1.26e−01 1.86e−02 2.37e+00 9.83e−03 1.90e−06

Group20 1.22e+03 2.70e+00 3.89e+01 6.30e−02 8.04e−02

Appendix B

The benchmark functions

– CEC-2010 benchmark functions

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, . . . , xD): The candidate solution
o = (o1, o2, . . . , oD): The (shifted) global optimum
z = x − o, z = (z1, z2, . . . , zD): The shifted candidate

solution
P: A random permutation of 1, 2, . . . , D

Felliptic(x) =
D∑

i=1

(106)
i − 1

D − 1
xi

2

Frosenbrock =
D−1∑

i=1

[100(xi
2 − xi+1)

2 + (xi − 1)2]

Frastrigin =
D∑

i=1

[xi
2 − 10 cos(2π)xi + 10]

Fackley = −20exp

⎛

⎝−0.2

√
√
√
√ 1

D

D∑

i=1

xi
2

⎞

⎠

− exp

(
1

D

) D∑

i=1

cos(2πxi)) + 20 + c

Fschwefel =
D∑

i=1

⎛

⎝
i∑

j=1

xi

⎞

⎠

2

F9(x) =
D
2m∑

k=1

Frot_elliptic[z(P(k−1)∗m+1 : Pk∗m)]

+Frotelliptic[z(PD
2 +1 : PD)]

F10(x) =
D
2m∑

k=1

Frot_rastrigin[z(P(k−1)∗m+1 : Pk∗m)]

+Frastrigin[z(PD
2 +1 : PD)]

F11(x) =
D
2m∑

k=1

Frot_ackley[z(P(k−1)∗m+1 : Pk∗m)]

+Fackley[z(PD
2 +1 : PD)]

F12(x) =
D
2m∑

k=1

Fschwefel[z(P(k−1)∗m+1 : Pk∗m)]

+Fsphere[z(PD
2 +1 : PD)]

F13(x) =
D
2m∑

k=1

Frot_rosenbrock[z(P(k−1)∗m+1 : Pk∗m)]

+Fsphere[z(PD
2 +1 : PD)]

F14(x) =
D
m∑

k=1

Frot_elliptic[z(P(k−1)∗m+1 : Pk∗m)]

F15(x) =
D
m∑

k=1

Frot_rastrigin[z(P(k−1)∗m+1 : Pk∗m)]

F16(x) =
D
m∑

k=1

Frot_ackley[z(P(k−1)∗m+1 : Pk∗m)]

F17(x) =
D
m∑

k=1

Fschwefel[z(P(k−1)∗m+1 : Pk∗m)]

F18(x) =
D
m∑

k=1

Frosenbrock[z(P(k−1)∗m+1 : Pk∗m)]

123

Multilevel framework for large-scale global optimization

– CEC-2013 benchmark functions

Dimension: D = 1000
Group size: m = 50

S = 50, 25, 25, 100, 50, 25, 25, 700

S1 = {50, 50, 25, 25, 100, 100, 25, 25, 50, 25, 100,
25, 100, 50, 25, 25, 25, 100, 50, 25}

xopt : The optimum decision vector
P: A random permutation of 1, 2, . . . , D
Tosz: A transformation function to create smooth local

irregularities.
Tasy: A transformation function to break the symmetry of

the symmetric functions.
λ: A D-dimensional diagonal matrix with the diagonal

elements is used to create ill-conditioning.
R: An orthogonal rotation matrix which is used to rotate

the fitness landscape randomly around various axes
m: The overlap size between subcomponents

y = x − xopt

yi = y(P[Ci−1+1] : P[Ci]) i ∈ 1, . . . , |S|,

yi1 = y(P[Ci−1−(i−1)m+1] : P[Ci −(i−1)m]) i ∈ 1, . . . , |S|,

yi2 = y(P[Ci−1−(i−1)m+1] : P[Ci −(i−1)m])
−xopti i ∈ 1, . . . , |S|,

zi = Tosz(Ri yi), i ∈ 1, . . . , |S| − 1

zi1 = T 0.2
asy Tosz(Ri yi1), i ∈ 1, . . . , |S| − 1

zi2 = T 0.2
asy Tosz(Ri yi2), i ∈ 1, . . . , |S| − 1

z|S| = Tosz(y|S|)

Ri : a|Si | × |Si |

F4(x) =
|s|−1∑

k=1

wi felliptic(zi) + felliptic(z|s|),

F5(x) =
|s|−1∑

k=1

wi frastrigin(zi) + frastrigin(z|s|),

F6(x) =
|s|−1∑

k=1

wi fackley(zi) + fackley(z|s|),

F7(x) =
|s|−1∑

k=1

wi fschwefel(zi) + fschwefel(z|s|),

F8(x) =
|s1|∑

k=1

wi felliptic(zi),

F9(x) =
|s1|∑

k=1

wi frastrigin(zi),

F10(x) =
|s1|∑

k=1

wi fackley(zi),

F11(x) =
|s1|∑

k=1

wi fschwefel(zi),

F13(x) =
|s1|∑

k=1

wi fschwefel(zi1),

F14(x) =
|s1|∑

k=1

wi fschwefel(zi2),

References

Andrea S, Karen C, Marian Scott E et al (2000) Sensitivity analysis, vol
134. Wiley, New York

Andrea S, Marco R, Terry A, Francesca C, Jessica C, Debora G,
Michaela S, Stefano T (2008) Global sensitivity analysis: the
primer. Wiley, New York

Benjamin D, Dirk S, Carsten W (2013) When do evolutionary algo-
rithms optimize separable functions in parallel? In: Proceedings of
the twelfth workshop on Foundations of genetic algorithms XII,
pp 51–64. ACM

DanielM,Manuel L, FranciscoH (2010)Ma-sw-chains:Memetic algo-
rithmbased on local search chains for large scale continuous global
optimization. In: Evolutionary Computation (CEC), 2010 IEEE
Congress on, IEEE, pp 1–8

Eman S, Daryl E, Ruhul S (2012a) Dependency identification technique
for large scale optimization problems. In: Evolutionary Computa-
tion (CEC), 2012 IEEE Congress on, IEEE, pp 1–8

Eman S, Daryl E, Ruhul S (2012b) Using hybrid dependency iden-
tification with a memetic algorithm for large scale optimization
problems. In: Simulated evolution and learning, Springer, pp 168–
177

Francesca C, Jessica C, Andrea S (2007) An effective screening design
for sensitivity analysis of large models. Environ Model Softw
22(10):1509–1518

Frank W (1945) Individual comparisons by ranking methods. Biometr
Bull, pp 80–83

Frans Van den B, Andries PE (2004) A cooperative approach to particle
swarm optimization. Evol Comput IEEE Trans 8(3):225–239

Hanning C, Yunlong Z, Kunyuan H, Xiaoxian H, BenN (2008) Cooper-
ative approaches to bacterial foraging optimization. In: Advanced
intelligent computing theories and applications. with aspects of
artificial intelligence, Springer, NY, pp 541–548

Hemant Kumar S, Tapabrata R (2010) Divide and conquer in coevolu-
tion:Adifficult balancing act. In:Agent-based evolutionary search,
Springer, pp 117–138

Herschel R, Ömer FA (1999) General foundations of high-dimensional
model representations. J Math Chem 25(2–3):197–233

123

S. Mahdavi et al.

HuiW,ShahryarR, ZhijianW(2013) Parallel differential evolutionwith
self-adapting control parameters and generalized opposition-based
learning for solving high-dimensional optimization problems. J
Parallel Distrib Comput 73(1):62–73

Jasbir A (2004) Introduction to optimum design. Academic Press, New
York

Jinpeng L, Ke T (2013) Scaling up covariance matrix adaptation evo-
lution strategy using cooperative coevolution. In: Intelligent data
engineering and automated learning–IDEAL 2013, Springer, pp
350–357

Joaquín D, Salvador G, Daniel M, Francisco H (2011) A practical tuto-
rial on the use of nonparametric statistical tests as a methodology
for comparing evolutionary and swarm intelligence algorithms.
Swarm Evol Comput 1(1):3–18

Ke T, Xiaodong L, Ponnuthurai Nagaratnam S, Zhenyu Y, Thomas
W (2010) Benchmark functions for the CEC’2010 special ses-
sion and competition on large-scale global optimization. Technical
report, Nature Inspired Computation and Applications Laboratory
(NICAL),USTC, China. http://www.it-weise.de/documents/files/
TLSYW2009BFFTCSSACOLSGO.pdf

Liang S, Shinichi Y, Xiaochun C, Yanchun L (2012) A cooperative
particle swarm optimizer with statistical variable interdependence
learning. Inf Sci 186(1):20–39

MacQueen J et al (1967) Some methods for classification and analysis
of multivariate observations. In: Proceedings of the fifth Berke-
ley symposium on mathematical statistics and probability., vol 1.
California, pp 281–297

MaxDM(1991)Factorial samplingplans for preliminary computational
experiments. Technometrics 33(2):161–174

Mitchell AP, de Kenneth AD (1994) A cooperative coevolutionary
approach to function optimization. In: Parallel problem solving
from naturePPSN III, Springer, pp 249–257

Mitchell AP (1997) The design and analysis of a computational model
of cooperative coevolution. PhD thesis, Citeseer

Mohammad Nabi O, Xiaodong L, Ke T (2015) Designing benchmark
problems for large-scale continuous optimization. Inf Sci 316:419–
436

Mohammad Nabi O, Xiaodong L, Xin Y (2011) Smart use of
computational resources based on contribution for cooperative
co-evolutionary algorithms. In: Proceedings of the 13th annual
conference on genetic and evolutionary computation, ACM, pp
1115–1122

MohammadNabi O, Xiaodong L, YiM, Xin Y (2014a) Cooperative co-
evolution with differential grouping for large scale optimization.
Evolutionary Computation, IEEE Transactions on 18(3): 378–393

Mohammad Nabi O, Yi M, Xiaodong L (2014b) Effective decomposi-
tion of large-scale separable continuous functions for cooperative
co-evolutionary algorithms. In: Evolutionary computation (CEC),
2014 IEEE Congress on, IEEE, pp 1305–1312

Sedigheh M, Mohammad Ebrahim S, Shahryar R (2015) Metaheuris-
tics in large-scale global continues optimization: a survey. Inf Sci
295:407–428

Sedigheh M, Mohammad Ebrahim S, Shahryar R (2014) Cooperative
co-evolution with a new decomposition method for large-scale
optimization. In: Evolutionary Computation (CEC), 2014 IEEE
Congress on, IEEE, pp 1285–1292

Singiresu SR, Rao SS (2009) Engineering optimization: theory and
practice. Wiley, New York

Wenxiang C, Thomas W, Zhenyu Y, Ke T (2010) Large-scale global
optimization using cooperative coevolution with variable interac-
tion learning. In: Parallel Problem Solving fromNature, PPSNXI,
Springer, Heidelberg, pp 300–309

Xiaodong L, Ke T, Mohammad NO, Zhenyu Y, Kai Q (2013) Bench-
mark functions for the cec 2013 special session and competition
on large-scale global optimization. Gene 7(33):8

Xiaodong L, Xin Y (2009) Tackling high dimensional nonsepara-
ble optimization problems by cooperatively coevolving particle
swarms. In: Evolutionary computation, 2009. CEC’09. IEEE
Congress on, pp 1546–1553. IEEE

Xiaodong L, Xin Y (2012) Cooperatively coevolving particle swarms
for large scale optimization. Evol Comput IEEE Trans 16(2):210–
224

Yoel T, Chi-Keong G (2010) Computational intelligence in expensive
optimization problems, vol 2. Springer, New York

Yong L, Xin Y, Qiangfu Z, Tetsuya H (2001) Scaling up fast evolution-
ary programming with cooperative coevolution. In: Evolutionary
Computation, 2001. Proceedings of the 2001 Congress on, IEEE.
vol 2, pp 1101–1108

Yuanfang Ren, Yan Wu (2013) An efficient algorithm for high-
dimensional function optimization. Soft Comput 17(6):995–1004

Zhao S-Z, Ponnuthurai Nagaratnam S, Swagatam D (2011) Self-
adaptive differential evolution with multi-trajectory search for
large-scale optimization. Soft Comput 15(11):2175–2185

Zhenyu Y, Ke T, Xin Y (2008a) Large scale evolutionary optimization
using cooperative coevolution. Inf Sci 178(15):2985–2999

Zhenyu Y, Ke T, Xin Y (2008b) Multilevel cooperative coevolution
for large scale optimization. In: Evolutionary computation, 2008.
CEC 2008. IEEEWorld Congress on Computational Intelligence).
IEEE Congress on, IEEE, pp 1663–1670

ZhenyuY, Ke T, XinY (2008c) Self-adaptive differential evolutionwith
neighborhood search. In: Evolutionary computation, 2008. CEC
2008. (IEEE World Congress on Computational Intelligence).
IEEE Congress on, IEEE, pp 1110–1116

123

http://www.it-weise.de/documents/files/TLSYW2009BFFTCSSACOLSGO.pdf
http://www.it-weise.de/documents/files/TLSYW2009BFFTCSSACOLSGO.pdf

	Multilevel framework for large-scale global optimization
	Abstract
	1 Introduction
	2 Background review
	2.1 Cooperative co-evolution
	2.2 Sensitivity analysis

	3 Multilevel optimization framework based on the variable effect
	4 Analyzing the imbalance feature impact on the optimization methods
	5 Experimental studies and discussion
	5.1 Experiment setup
	5.2 Experiment series 1: comparison among Bilevel framework and MOFBVE frameworks with higher number of levels, k (3, 4, and 5)
	5.2.1 Experiment series 1. Part A: results on the modified CEC-2010 test functions
	5.2.2 Experiment series 1. Part B: results on the modified normal CEC-2010 test functions
	5.2.3 Experiment series 1. Part C: results on the CEC-2013 LSGO benchmark functions
	5.2.4 Summary and discussion

	5.3 Experiment series 2: a comparison of 4-MOFBVE framework with the CC algorithms
	5.3.1 Experiment series 2. Part A: results on the modified CEC-2010 test functions
	5.3.2 Experiment series 2. Part B: results on the modified normal CEC-2010 test functions
	5.3.3 Experiment series 2. Part C: results on the CEC-2013 LSGO benchmark functions
	5.3.4 Summary and discussion

	5.4 Experiment series 3: comparison of MOFBVE algorithms with SaNSDE algorithm

	6 Conclusions and future directions
	Acknowledgments
	Appendix A
	Appendix B
	References

